Chemical composition and forage quality of three halophytes of the genera Sarcocornia and Salicornia inhabiting the saline marginal lands of Southern Tunisia

Authors

DOI:

https://doi.org/10.56027/JOASD.122023

Keywords:

biomass, digestibility, drylands, fodder, halophytes

Abstract

Halophytes are widespread in the Tunisian marginal saline soils but not widely exploited. This study aims to evaluate the forage quality and chemical composition of three halophytes, native from  southern Tunisia Salicornia emerici Duval-Jouve, Sarcocornia alpini (Lag.) Castrov. et Sarcocornia fruticosa (L.), compared to the cultivated forage legume Medicago sativa. Dry (DM) and organic (OM) matters, ash (MM), ions and crude protein (CP) contents, anti-nutritional compounds and in vitro digestibility were determined. Results indicate that dry matter of these halophytes ranged from 10.50 to 18.63% for S. emerici and S. fruticosa, respectively. Compared to S. emerici, both halophytes recorded the highest percentages of organic matter and crude protein and higher contents of Na+, K+, Mg2+, Ca2+, and Fe2+. These three halophytes, harvested during the summer period, showed important digestibility percentages (> 70 % MS), exceeding those of M. sativa, and low levels of Acid Detergent Fiber (ADF), Acid Detergent Lignin (ADL), and anti-nutritive compounds. These findings suggest that the valorization of these native halophytes as fodder is promising, in particular S. alpini and S. fruticosa. This can provide many economic and environmental advantages in marginal drylands.

References

Abdal, M.S. (2009). Salicornia production in Kuwait. World Applied Sciences Journal 6, 1033–1038.

Amamou, H., Sassi, M.B., Aouadi, H., Khemiri, H., Mahouachi, M., Beckers, Y., Hammami, H. (2018). Climate change–related risks and adaptation strategies as perceived in dairy cattle farming systems in Tunisia. Climate Risk Management 20, 38–49.

Anon, M. (2009). Introduction of salt-tolerant forage production systems to salt–affected lands in Sinai Peninsula in Egypt: a pilot demonstration project. Final Report, DRC, Egypt-ICBA, UAE.

Arya, S.S., Devi, S., Ram, K., Kumar, S., Kumar, N., Mann, A., Kumar, A., Chand, G. (2019). The plants of therapeutic medicine. Ecophysiol. Abiotic Stress Responses Util. Halophytes 2019, 271–287.

Badri, M., Ludidi, N. (2020). Halophytes as a resource for livestock in Africa: Present status and prospects. In Handbook of Halophytes; Grigore, M.N., Ed.; Springer: Cham, Switzerland 2021, 1–17.

Bahorun, T., Gressier, B., Trotin, F., Brunet, C., Dine, T., Luyckx, M., Cazin M, Cazin JC, Pinkas, M. (1996). Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittel-forschung 46, 1086–1089.

Broadhurst, R.B., & Jones, W.T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture 29, 788–794.

Custódio L., Rodrigues M.J., Pereira C.G., Castañeda–Loaiza V., Fernandes, E., Standing, D., Neori A., Shpigel M., Sagi M. (2021). A review on Sarcocornia species: Ethnopharmacology, nutritional properties, phytochemistry, biological activities and propagation. Foods 10, 2778.

Ehsen, S., Qasim, M., Abideen, Z., Rizvi, R. F., Gul, B., Ansari, R., Khan, M. A. (2016). Secondary metabolites as anti–nutritional factors in locally used halophytic forage/fodder. Pakistan Journal of Botany 48, 629–636.

El Shaer, H.M. (2010). Halophytes and salt–tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Research 91, 3–12.

El Shaer, H.M., (1997). Sustainable utilization of halophytic plant species as livestock fodder in Egypt. In: Salinity Problems and Halophyte Use: Water Management, Salinity and Pollution Control Towards Sustainable Irrigation in the Mediterranean Region. CIHEAM International Conference, Valenzeno-Bari, pp. 171–184.

El Shaer, H.M., Attia–Ismail, S.A. (2015). Halophytic and salt tolerant feedstuffs in the Mediterranean basin and Arab region: an overview. Halophytic and salt-tolerant feedstuffs impact on nutrition, physiology and reproduction of livestock. Boca Raton: CRC Press Taylor & Francis Group 21–36.

Essaidi, I., Brahmi, Z., Snoussi, A., Koubaier, H.B.H., Casabianca, H., Abe, N., El Omri A., Chaabouni M.M., Bouzouita, N. (2013). Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control 32, 125–133.

Flowers T.J., Colmer T.D. (2008). Salinity tolerance in halophytes. New Phytologist 179, 945–963.

Glenn, E.P., Brown, J.J., Blumwald, E. (1999). Salt tolerance and crop potential of halophytes.Critical Reviews in Plant Sciences 18, 227–255.

Guan, F., Wang, Q., Wang, M., Shan, Y., Chen, Y., Yin, M., Zhao Y., Feng X., Liu F., Zhang, J. (2015). Isolation, identification and cytotoxicity of a new noroleanane-type triterpene saponin from Salicornia bigelovii Torr. Molecules 20, 6419–6431.

Guiraud, G., Fardeau, J.C. (1977). The determination of nitrates in soils and plants by the Kjeldahl method. Annales Agronomiques 28, 329–333.

Hartley A., Jones R., and Janes T., (2015). Projections relatives aux changements des services écosystémiques face au changement climatique. UNEP-WCMC Technical Report. http://www.unepwcmc.org

Hasanuzzaman, M., Nahar, K., Alam, M., Bhowmik, P.C., Hossain, M., Rahman, M.M., Prasad M.N.V., Ozturk M., Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed research international 2014, 589341.

Hayder, Z., Gaied, R.B., Tlili, A., Sbissi, I., Tarhouni, M. (in press). Phylogenetic and morphological studies of Sarcocornia (L.) AJ Scott and Salicornia L. (Chenopodiaceae) and insights into plant diversity with first record of two species new for Tunisia. Genetic Resources and Crop Evolution 70, 717–729.

Helaly, F.M., Soliman, H.S.M., Soheir, A.D., Ahmed, A.A. (2001). Controlled release of migration of molluscicidal saponin from different types of polymers containing Calendula officinalis. Advances in Polymer Technology: Journal of the Polymer Processing Institute 20, 305–311.

Hessini, K., Jeddi, K., Shaer, H.E., Smaoui, A., Salem, H.B., Siddique, K.H. (2020). Potential of herbaceous vegetation as animal feed in semi‐arid Mediterranean saline environments: The case for Tunisia. Agronomy Journal 112, 2445–2455.

Kang, S., Post, W.M., Nichols, J.A., Wang, D., West, T.O., Bandaru, V., Izaurralde, R.C. (2013). Marginal lands: concept, assessment and management. Journal of Agricultural Science 5, 129.

Keenan, R.J., Reams, G.A., Achard, F., de Freitas, J.V., Grainger, A., Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management 352, 9–20.

Khan, M.A., Duke, N.C. (2001). Halophytes-A resource for the future. Wetlands Ecology and Management 9, 455–456.

Kim, S., Lee, E.Y., Hillman, P.F., Ko, J., Yang, I., Nam, S.J. (2021). Chemical structure and biological activities of secondary metabolites from Salicornia europaea L. Molecules 26, 2252.

Knaepen, H. (2021). Climate Risks in Tunisia Challenges to Adaptation in the Agri-Food System; European Centre for Development Policy Management (ECDPM): Maastricht, The Netherlands, 2021.

Laudadio, V., Tufarelli, V., Dario, M., Hammadi, M., Seddik, M.M., Lacalandra, G.M., Dario, C. (2009). A survey of chemical and nutritional characteristics of halophytes plants used by camels in Southern Tunisia. Tropical animal health and production 41, 209–215.

Lopes, M., Silva, A.S., Séndon, R., Barbosa–Pereira, L., Cavaleiro, C., Ramos, F. (2023). Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia ramosissima and Sarcocornia perennis alpini. Molecules 28, 2726.

Mahmoudi, M., Boughalleb, F., Maaloul, S., Zaidi, S., Bakhshandeh, E., Abdellaoui, R. (2023). The effect of seasonality on the phytochemical composition of two Limonium species naturally growing in a Mediterranean arid-salt marsh: Harvesting time optimization by modeling approach. Scientia Horticulturae 309, 111616.

Masters, D.G., Benes, S.E., Norman, H.C. (2007). Biosaline agriculture for forage and livestock production. Agriculture, ecosystems & environment 119, 234–248.

Ndesanjo, R.B., Fensholt, R., Nielsen, M.R., Theilade, I. (2023). Climate variability impacts on pasture productivity and pastoral livelihoods in northern Tanzania. Regional Environmental Change 23, 54.

ODS, 2021. Gouvernorat de Médenine en chiffres. Ministère de l’Economie et de la Planification. Office de Développement du Sud 2021, pp 105. http://www.ods.nat.tn/upload/files/pdf/CHIFMEDENINE.pdf

ONAGRI, 2021. Observatoire National de l’Agriculture. onagri-vigilance N° 79., pp 11. onagri.nat.tn/uploads/vigilance/onagri-vigilance-janvier-2021.pdf

Pedrono M., Locatelli B., Ezzine-de-blas D., Pesche D., Morand S., Binot A. (2015). Les services écosystémiques face au changement climatique, in : Torquebiau E. (Ed.), Changement climatique et agricultures du monde. Versailles : Ed. Quae, pp. 236–245.

Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M.H., Koyro, H.W., Ranieri, A., Abdelly C., Smaoui, A. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource technology 101, 6822–6828.

Sharma, R., Wungrampha, S., Singh, V., Pareek, A., Sharma, M.K. (2016). Halophytes as bioenergy crops. Frontiers in Plant Science 7, 1372.

Tam, N.F.Y., Yao, M.W.Y. (1999). Three digestion methods to determine concentrations of Cu, Zn, Cd, Ni, Pb, Cr, Mn, and Fe in mangrove sediments from Sai Keng, Chek Keng, and Sha Tau Kok, Hong Kong. Bulletin of Environmental Contamination and Toxicology 62, 708–716.

Tilley, J.M.A., Terry, D.R. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass and forage science 18, 104–111.

Tlili A., Ghanmi E., Ayeb N., Louhaichi M., Neffati M., and Tarhouni M., (2020). Revegetation of marginal saline rangelands of southern Tunisia using pastoral halophytes. African Journal of Range & Forage Science 37, 151–157.

Tlili, A., Tarhouni, M., Cerdà, A., Louhaichi, M., Neffati, M. (2018). Comparing yield and growth characteristics of four pastoral plant species under two salinity soil levels. Land Degradation & Development 29, 3104–3111.

Van Soest, P.J., Robertson, J.B. (1979). Systems of analysis for evaluating fibrous feeds, in: Pigden, W.J., Balch, C.C., Graham, M. (Eds.), Standartization of Analytical Methodology for Feeds. IDRC, Ottawa CA, pp. 49–60.

Ventura, Y., Sagi, M. (2013). Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environmental and Experimental Botany 92, 144–153.

Wilson, A.D. (1992). Halophytic shrubs in semi-arid regions of Australia value for grazing and land stabilization. In Proceedings of the International Workshop on Halophytes for Reclamation of Saline Wastelands and as a Resource for Livestock Problems and Prospects, Nairobi, Kenya, 22–27 November 1992, pp. 101–113.

Xu, Z., Heuschele, D.J., Lamb, J.F., Jung, H.J.G., Samac, D.A. (2023). Improved Forage Quality in Alfalfa (Medicago sativa L.) via Selection for Increased Stem Fiber Digestibility. Agronomy 13, 770.

Downloads

Published

2023-05-29

How to Cite

Hayder, Z., Tlili, A., & Tarhouni, M. (2023). Chemical composition and forage quality of three halophytes of the genera Sarcocornia and Salicornia inhabiting the saline marginal lands of Southern Tunisia. JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT, 5(3), 1–10. https://doi.org/10.56027/JOASD.122023

Issue

Section

Articles

Plum Analytics

 Artifact Widget