Genetic diversity and relationships among wild and cultivated Ficus carica L.: Usefulness of RGA markers

Authors

  • Sahar Haffar
  • Ghada Baraket
  • Gabriele Usai
  • Aymen Aounallah
  • Ahmed Ben Abdelkrim
  • Khaled Chatti
  • Amel Salhi Hannachi

DOI:

https://doi.org/10.56027/JOASD.072023

Keywords:

Ficus carica L., RGA, Tunisia, structuring, genetic diversity

Abstract

Disease resistance and the maintenance of genetic diversity in wild and cultivated populations are very important challenges to implement breeding program and markers assisted selection of Ficus carica L. facing climate change and its consequences. Resistance gene analogs (RGA) markers were used for variety discrimination and assessment of genetic structure and diversity of wild and cultivated Ficus carica L. species in Tunisia. The RGA markers were efficient and reliable markers for discriminating wild and cultivated fig. The high level of polymorphism (95.65) detected suggests the effectiveness of RGAs for both genetic fingerprinting and relationships assessment in wild and cultivated fig. The detected markers may represent candidate genes for disease resistance and could be further used to facilitate the identification of candidate genes and accelerate the genetic improvement of disease resistance in breeding programs of Ficus carica species.

References

Aljane, F., Ferchichi, A. (2010). Assessment of genetic diversity of Tunisian fig (F. carica L.) cultivars using morphological and chemical characters. Acta botanica gallica 157(1),171–182.

Aljane, F., Ferchichi, A., Boukhris, M. (2005, May). Pomological characteristics of local fig (Ficus carica) cultivars in Southern Tunisia. In III International Symposium on Fig 798, pp. 123-128.

Ali-Shtayeh, M.S., Jamous, R.M., Abu Zaitoun, S.Y., Mallah, O.B., Mubaslat, A.K.h. (2014). Genetic Diversity of the Palestinian Fig (Ficus carica L.) Collection by Pomological Traits and RAPD Markers. American Journal of Plant Sciences 5,1139-1155.

Aradhya, M.K., Stover, E., Velasco, D., Koehmstedt, A. (2010). Genetic structure and differentiation in cultivated fig (Ficus carica L.). Genetica 138, 681-694.

Ben Abdelkrim, A., Baraket, G., Essalouh, L., Achtak, H., Khadari, B., Salhi-Hannachi, A. (2015). Use of morphological traits and microsatellite markers to characterize the Tunisian cultivated and wild figs (Ficus carica L.). Biochemical Systematics and Ecology 59,209-219.

Dellapor, S.L, Wood, J., Hicks, J.B. (1983) A plant DNA minipreparation: version II. Plant Molecular Biology Reporter 1,19–21.

Dong, P., Wei, Y.M., Chen, G.Y. et al. (2009). Resistance gene analog polymorphisms (RGAPs) in wild emmer wheat (Triticum dicoccoides) and their ecological associations. Genetic Resources and Crop Evolution 56, 121–136.

Falistocco, E. (2016). Recurrent events of polyploidy in Ficus carica L. (Moraceae). International Journal of Plant Sciences 177, 319–325

Falistocco, E. (2020). The millenary history of the fg tree (Ficus carica L.). Advances in Agriculture, Horticulture and Entomology 5,130

FAOSTAT (2019) Food and agriculture organization, FAO STAT database. http://www.fao.org/faostat/en/#data/QC. Accessed 27 Dec 2020

Haffar, S., Baraket, G., Usai, G. et al. (2022). Conserved DNA-derived polymorphism as a useful molecular marker to explore genetic diversity and relationships of wild and cultivated Tunisian figs (Ficus carica L.). Trees 36, 723–735.

Hammer, Ø., Harper, D.A.T., Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica4,9. http://palaeoelectronica.org/2001_1/past/isse 01.htm.

Accessed 18 juillet 2022

Kislev, M.E., Hartmann, A., Bar-Yosef, O. (2006). Early domesticated fig in the Jordan Valley. Science 312, 1372-1374

Khadivi, A., Anjam, R., Anjam, K. (2018). Morphological and pomological characterization of edible fig (Ficus carica L.) to select the superior trees. Scientia Horticulturae 238, 66–74.

Nemli, S., Kutlu, B., Tanyolac, B. (2015). Determination of the population structure of common bean (Phaseolus vulgaris L.) accessions using lipoxygenase and resistance gene analog markers. Biochemical Systematics and Ecology 59,107-115.

Ochiai, A. (1957). Zoogeographic studies on the soleoid fshes found in Japan and its neighbouring regions. Bulletin of the Japanese Society of Scientific Fisheries 22,526–530

Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fngerprinting of potato cultivars. Theoretical and Applied Genetics 98(1),107–112

Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J.P., Hyvönen, J. (2013). Advances in plant gene-targeted and functional markers : a review. Plant Methods 9(1),6.

Satya, P., Karan, M., Chakraborty, K., Biswas, C., Karmakar, P.G. (2014). Comparative analysis of diversification and population structure of kenaf (Hibiscus cannabinus L.) and roselle (H. sabdariffa L.) using SSR and RGA (resistance gene analogue) markers. Plant Systematics and Evolution 300,1209–1218.

Zohary D, Hopf M (1993) Domestication of plants in the old world. Clarendon Press, Oxford.

Downloads

Published

2023-05-22

How to Cite

Haffar, S., Baraket, G., Usai, G., Aounallah, A., Ben Abdelkrim, A., Chatti, K., & Salhi Hannachi, A. (2023). Genetic diversity and relationships among wild and cultivated Ficus carica L.: Usefulness of RGA markers. JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT, 5(2), 1–6. https://doi.org/10.56027/JOASD.072023

Plum Analytics

 Artifact Widget