Use of geophysical methods to evaluate soil sediments behind gabion check dams in the dry regions of southern Tunisia
DOI:
https://doi.org/10.56027/JOASD.152023Keywords:
Erosion, tomography, runoff, Sediment, TopographyAbstract
This study aims to detect sediment at six gabions check-dams distributed in the upstream and downstream areas of the Koutine catchment located in an arid area in the southeast of Tunisia and characterized by an annual mean precipitation of less than 200 mm. The detection of sediment is based on the Electrical Resistivity Tomography (ERT) method associated with topographic measurements. About ten lines were arranged, with 72 electrodes. The results of resistivity data obtained during field measurements were inverted into subsurface structures using least squares inversion techniques. The preliminary results indicate that the sediment can be identified using an ERT contour method. The obtained results are calibrated based on samples collected for laboratory analysis. The accuracy of the high-density ERT method was justified. The density increases with the sediment deposit depth. Topographic methods were used to estimate the surface and the relief of deposed sediments in the area monitored by the gabions check-dams. This study provides an approach based on the high-density electrical resistivity tomography method and a topographic investigation to estimate sediment yield behind gabion check-dams that control catchments. The sedimentary deposit of eroded soils reduces the effectiveness of the recharge structures. Consequently, the improvement of permeability at the level of the retention basins (by cleaning the settlement basin and creating recharge wells) is of great importance. The study results are beneficial for decision-makers to evaluate the existing soil conservation and water management plans, which can be further adjusted using appropriate soil erosion mitigation options based on scientific evidence.
References
Aarhus-GeoSoftware (2022). Rapid 2-D Resistivity & IP inversion using the least-squares method Wenner (α,β,γ)), dipole-dipole, inline pole-pole, poledipole, equatorial dipole-dipole, offset pole-dipole, Wenner-Schlumberger, gradient and non-conventional arrays On land, aquatic, cros (October).
Albergel, J., Pepin, Y., Nasri, S. L. A. H., & Boufaroua, M. O. H. A. M. E. D. (2003). Erosion et transport solide dans des petits bassins versants méditerranéens. IAHS PUBLICATION, 373-379.
Ballais, J. (2018). Trois thèses sur les précipitations en Tunisie : Kassab F ., ( 1979 ). - Les très fortes pluies en Tunisie ; Henia L ., ( 1980 ). - Les précipitations pluvieuses dans la Tunisie tellienne ; Bousnina A ., ( 1986 ). - La variabilité des pluies en Tunisie (1979), 75–76.
Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water. Intergovernmental Panel on Climate Change Secretariat.
Bosch, S. van den, Hessel, R., Ouessar, M., Zerrim, A., & Ritsema, C. J. (2014). Determining the saturated vertical hydraulic conductivity of retention basins in the Oum Zessar watershed, Soutern Tunisia (No. 22). Alterra, Wageningen/Institut des Régions Arides, Tunisia.
DGRE, (Direction Générale des resources en eau). (2018) Annuaire pluviométrique. Ministère de l’Agriculture, Tunis.
Ellouze, M., Azri, C., & Abida, H. (2009). Spatial variability of monthly and annual rainfall data over Southern Tunisia. Atmospheric Research, 93(4), 832-839.
Escadafal, R., Mtimet, A., & Asseline, J. (1986). Etude Expérimentale de la Dynamique Superficielle D’un sol Aride (Bir Lahmar-Sud Tunisien): Résultats des Campagnes de Mesures Sous Pluies Simulées.
Fersi, M. (1985) Etude hydrologique sur Oued Oum Ezzessar à Koutine.
Floret, C. & Pontanier, R. (1982). L’aridité en Tunisie présaharienne : climat, sol, végétation et aménagement - fdi:02461 - Horizon. ORSTOM, Paris. Retrieved December 8, 2020, from https://www.documentation.ird.fr/hor/fdi:02461
Gaddas, F., Stambouli, T. & M.C, D. (2010). Evaluation du risque d’érosion hydrique. Rev. l’INAT 25, 107–119.
Ghorbel, A. & Claude, J. (1982). Mesure de l’envasement dans les retenues de sept barrages en Tunisie: estimation des transports solides.
Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319(1-4), 83-95.
IRIS. (2012). SYSCAL Junior / R1 + Switch Résistivimètres Multi-électrode à 2 voies pour mesure de Résistivité et PP 33(0), 0–59.
Jebari, S., Berndtsson, R., Bahri, A., & Boufaroua, M. (2008). Exceptional rainfall characteristics related to erosion risk in semiarid Tunisia. The Open Hydrology Journal, 2(1).
Jomaa, S., Barry, D. A., Brovelli, A., Heng, B. C. P., Sander, G. C., Parlange, J. Y., & Rose, C. W. (2012). Rain splash soil erosion estimation in the presence of rock fragments. Catena, 92, 38-48.
Jomaa, S., Barry, D. A., Rode, M., Sander, G. C., & Parlange, J. Y. (2017). Linear scaling of precipitation-driven soil erosion in laboratory flumes. Catena, 152, 285-291.
Kotti, F., Dezileau, L., Mahé, G., Habaieb, H., Bentkaya, M., Dieulin, C., & Amrouni, O. (2018). Etude de l'impact des barrages sur la réduction des transports sédimentaires jusqu'à la mer par approche paléohydrologique dans la basse vallée de la Medjerda. Proceedings of the International Association of Hydrological Sciences, 377, 67-76.
Labat, D., Goddéris, Y., Probst, J. L., & Guyot, J. L. (2004). Evidence for global runoff increase related to climate warming. Advances in water resources, 27(6), 631-642.
Mohamadi, M. A., & Kavian, A. (2015). Effects of rainfall patterns on runoff and soil erosion in field plots. International soil and water conservation research, 3(4), 273-281.
Mtimet, A. (2001). Soils of Tunisia. Options Méditerr, 34, 243-268.
Nasri, S., Albergel, J., Cudennec, C., & Berndtsson, R. (2004). Hydrological processes in macrocatchment water harvesting in the arid region of Tunisia: the traditional system of tabias/Processus hydrologiques au sein d’un aménagement de collecte des eaux dans la région aride tunisienne: le système traditionnel des tabias. Hydrological Sciences Journal, 49(2).
Ouessar, M., Bruggeman, A., Abdelli, F., Mohtar, R. H., Gabriels, D., & Cornelis, W. M. (2009). Modelling water-harvesting systems in the arid south of Tunisia using SWAT. Hydrology and Earth System Sciences, 13(10), 2003-2021.
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120-145.
Turc, L. (1961). Evolution des besoins en eau d’irrigation. évapotranspiration potentielle. Formule climatique simplifiée et mise à jour. Annuaire Agronomie.
Wilm, H. G., Thornthwaite, C. W., Colman, E. A., Cummings, N. W., Croft, A. R., Gisborne, H. T., ... & Taylor, C. A. (1944). Report of the Committee on Transpiration and Evaporation, 1943–44. Eos, Transactions American Geophysical Union, 25(5), 683-693.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/
Plum Analytics
Artifact Widget