Green waste biochar effects on sandy soil physicochemical properties

Authors

  • Habib Lamourou
  • Nissaf Karbout
  • Zied Zriba
  • Inès Rahma Zoghlami
  • Mohamed Ouessar

DOI:

https://doi.org/10.56027/JOASD.142022

Keywords:

biochar, pyrolysis temperature, total porosity, hydraulic conductivity

Abstract

The organic amendment of degraded soil in South East of Tunisia was used to restore the chemical, and physical properties of soil quality investigated in this study. Biochar derived from pyrolyzed green waste at 360°C was used like organic amendment.  Nines randomized plots with one square meter of the area of each plot in three replicates have been installed in the Institute of Arid Area in Mednine South East of Tunisia, with two rates of biochar 20 and 40 t/ha were investigated: 20 tons/ha (B20) (2 kg/m²) and 40 tons/ha (B40) (4 kg/m²). The results showed that biochar had a positive effect on soil's physical and chemical properties compared to non-amended soil (Untreated soil). Biochar supply at rates of 20 and 40 tons/ha, causes a decrease in electrical conductivity to achieve 2.66 mS/cm for the B40 dose after 1 year of amendment, also a decrease in the bulk density at the surface layer (0-20 cm) has been registered, the total porosity which was decreased with depth. The hydraulic conductivity is favored by the incorporation of biochar in the soil which increases the volume of voids and tends to create preferential flow paths.

References

Abbas T., Rizwan M., Ali S., Adrees M., Mahmood A., Zia-Ur-Rehman M., Ibrahim M., Arshad M. & Qayyum M. F. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxical. Environ. Saf. 148, 825-833.

Abel, S., Peters A., Trinks T, Schonsky H., Facklam M. & Wessolek G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202, 183-191.

Abrol, V., Ben-Hur M., Verheijen F. G. A., Keizer J. J., Martins M. A. S., Tenaw H., Tchehansky L. & Graber E. R. (2016). Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment. J. Soils sediments 16, 2709-2719.

Abujabhah I. S., Bound S. A., Doyle R. & Bowman J. P. (2016). Effect of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol. 98, 243-253.

Adegbeye M. J., Ravi Kanth Reddy P., Obeisi A. I., Elghandour M .M. M. Y., Oyebamiji K.J., Salem A. Z. M., Morakinyo-Fasipe O. T., Cipriano-Salazar, M. & Camacho-Díaz L.M., (2020). Sustainable agriculture options for production, greenhouse gases and pollution alleviation, and nutrient recycling in emerging and transitional nations- An overview. J. Clean. Prod. 242, 118319.

Ahmed, M., Lee S. S., Lim J. E., Lee S. E., Cho J. S., Moon D. H., Hashimoto Y. & Ok Y. S. (2014). Speciation and Phyto availability of lead and antimony in a small arms range soil amended with mussed shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95, 433-441.

Ajayi, A. E., Holthusen, D. & Horn, R. (2016). Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Tillage Res. 155, 166-175.

Brockhoff, S.R., Christians, N.E., Killorn, R.J., Horton, R. & Davis, D.D. (2010). Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J. 102, 1627-1631.

Cantrell K.B., Hunt P.G., Uchimiya M., Novak J.M., Ro K.S, (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology 107, 419-428.

Chandra, S., Bhattacharya, J., (2019). Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soil. J. Clean. Prod. 215, 1123-1339.

Chen, Y., Shinogi, Y., Taira, M., (2010). Influence of biochar use on sugarcane grouch, soil parameters, and groundwater quality. Aust. J. Soil Res. 48, 526-530.

Chimento, C., Almagro, M., Amaducci, S., (2016). Carbon sequestration potential in perennial bioenergy crops: the importance of organic matter imputs and its physical protection. Global Change Biol. Bioenergy 8, 111-121.

Chen, B.L., Yuan, M.X., (2011). Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J. Soils sediments 11, 62-71.

Chintala, R., Schumacher, T.E., McDonald, L.M., Malo, D.D., Papiernik, S.K., Clay, S.A. and Julson, J.L., (2014). Phosphorus sorption and availability from biochars and soil/ biochar mixtures. Clean-soil air water 42, 626-634.

Claoston N., Samsuri A.W., Ahmed Husni M.H., Mohd Amran M.S., (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste management and reaserch 32, 331-339.

Dokoohaki, H., Miguez, F.E., Laird, D., Horton, R., Basso, A.S., (2017). Assessing the biochar effects on selected physical properties of a sandy soil: An analytical approach. Commun. Soil Sci. Plant Anal. 48, 1387-1398.

Erbaugh, J., Bierbaum, R., Castilleja, G., da Fonseca, G.A.B., Hansen, S.C.B., (2019). Toward sustainable agriculture in the tropics. World Dev. 121, 158-162.

Glasser, B., Lehmann, J., Zech, W., 2002. Ameliorating physical and chemical properties of highly weathered soils in tropics with charcoal- a review. Biol. Fertility soils 35, 219-230.

Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V., Deng, H.Y., (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 206, 46-59.

Herath, H.S.M.K., Camps-Arbestain, M., Hedley, M., (2013). Effect of biochar on soil physical properties in two contrasting soils: An Alfisoland an andisol.Geoderma 209, 188-197.

Hossain, M.K., Strezov, V., Chan, K.Y., Nelson, P.F., (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78, 1167-1171.

Ibn Ferjani, A., Jeguirim, M., Jellali, S., Limousy, L., Courson, C., Akrout, H., Thevenin, N., Ruidavets, L., Muller, A., Bennici, S., (2019). The use of exhausted grape marc to produce biofuels and biofertilizers: effect of pyrolysis temperatures on biochars properties. Renew. Sustain. Energ. Rev. 107, 425-433.

IBI (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. Version 2.1. International Biochar Initiative.

Shilpi Jain, Arjun Singh, Puja Khare, D. Chanda, Disha Mishra, Karuna Shanker, Tanmoy Karak, (2017). Toxicity assessment of Bacopa monnieri L., grown in biochar amended extremely acidic coal mine spoils. Ecol. Eng. 108, 211-219.

Jones, B.E.H., Haymes, R.J., Phillips, I.R., (2010). Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J. Environ. Manage. 91, 2281-2288.

Jeffery, S., et al., (2017). Biochar bocosts tropical but not temperate crop yields. Environ. Res. Lett.12.

Yuan Liu, Jirong Zhu, Chengyu Ye, Pengfei Zhu, Qingsong Ba , Jiayin Pang, Liangzuo Shu, (2018). Effects of biochar application on the abundance and community composition of denitrifying bacteria in a reclaimed soil from coal mining subsidence area. Sci. Total Environ. 625, 1218-1224.

Lehmann, J., et al., (2003). Nutrient availability and leaching in an archaeological anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant soil 249, 343-357.

Li, K., Liu, R., Sun, C., (2016). A review of methane production from agricultural residues in China. Renew. Sustain. Energ. Rev. 54, 857-865.

David A. Laird, Pierce Fleming, Dedrick D. Davis, Robert Horton, Baiqun Wang, Douglas L. Karlen, (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Gerderma 158, 443-449.

Lehmann, J., Rillig M.C., Thies J., Masiello, C.A., Hockaday, W.C., Crowley, D., (2011). Biochar effect on soil biota: a review. Soil biology and biochemistry 43, 1812-1836.

Limwikran, T., Kheoruenromne, I., Suddhiprakarn, A., Prakongkep, N., Gilkes, R.J., (2018). Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma 312, 139-150.

Yuyuan Li, Ru Gao, Rui Yang, Hongan Wei,Yong Li, Heai Xiao,Jinshui Wu, (2013). Using a simple soil column method to evaluate soil phosphorus leaching risk. Clean-soil air water 41, 1100-1107.

Lei, O., Zhang, R.D., (2013). Effects of biochar derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J. Soil sediments 13, 1561-1572.

Lehmann, J., Ithaca, York, N., USA, Australia, 2015. Biochar for environmental management: science, technology and implementation 25, 15801-15811(11).

Mukherjee A., Lal, R. (2014). The biochar dilemma. Soil research 52, 217.

Mukherjee A., Zimmerman A.R., Harris, W. (2011). Surface chemistry variations among a seres of laboratory-produced biochars. Geoderma 163, 247-255.

Moragues-Saitua, L., Arias-Gonzalez, A., Gartiza- Bengoetxea, N., (2017). Effects of biochar and wood ash on soil hydraulic properties: A field experiment involving contrasting temperate soils. Geoderma 305, 144-152.

Shaun Nielsen, Stephen Joseph, Jun Ye, Chee Chia, Paul Munroe, Lukas van Zwieten, Torsten Thomas, (2018). Crop-season and residual effects on sequentially applied mineral enhanced biochar and N fertilizer on crop yield, soil chemistry and microbial communities. Agric. Ecosyst. Environ. 255, 52-61.

Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S., (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 174, 105-112.

Oliveira, F.R., Patel, A.K., Jaisi, D.P.? Adhikari, S.K., (2017). Environmental application of biochar: current status and perspectives. Bioresour. Technol. 246, 110-122.

Ouyang, W., Zhao, X.C., Tysklind, M., Hao, F.H., (2016). Typical agricultural diffuse herbicide sorption with agricultural waste derived biochars amended soil of high organic matter content. Water Res. 92, 156-163.

Oguntunde, P.G., Abiodun, B.J., Ajayi, A. E., van de Giesen, N., (2008). Effects of charcoal production on soil physical properties in Ghana. J. Plant. Soil Sci. 171, 591-596.

Pariyar, P., Kumari, K., Jain, M.K., Jadhao. P.S., (2020). Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ.713, 136433.

Plaza C., Giannetta B., Fernández J. M., López-de-Sá E. G., Polo A., Gascó G., Méndez A. & Zaccone C., (2016). Response of different soil organic matter pools to biochar and organic fertilizers. Agric. Ecosyst. Environ. 225, 150-159.

Perez-Cruzado, C., Merino, A., Rodriguez-Soalleiro, R., (2011). A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crop in north-west Spain. Biomass Bioenergy 35, 2839-2851.

Qin X., Li Y., Wang H., Liu C., Li J., Wan Y., Gao Q., Fan F. & Liao Y. (2016). Long-term effect of biochar applications on yield-scaled greenhouse gas emissions in a rice paddy cropping system: a four-year case study in south China. Sci. Total Environ. 569, 1390-1401.

Rajapaksha A. U., Chen S. S., Tsang D. C. W., Zhang M., Vithanage M., Mandal S., Gao B., Bolan N. S. & Ok Y. S. (2016). Engineered/designer biochar for contaminant removal/ immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148, 276-291.

Roberts, D.A., Cole, A.J., Paul, N.A., de Nys, R., (2015). Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass. J Environ Manage 161, 173-180.

Rajkovich S., Enders A., Hanley K., Hyland C., Zimmerman A.R., Lehmann J., (2012). Corn growth and nitrogen nutrient after addition of biochars with varying properties to a temperate soil. Biology and fertility of soil 48, 271-284.

Rehrah D., Reddy M.R., Novak J.M., Bansode R.R., Schimmel K.A., Yu J., Watts D.W., Ahmedna M., (2014). Production and characterization of biochars from agriculturl by-products for use in soil quality enhancement. Journal of analytical and applied pyrolysis 108, 301.

Semida, W.M., Beheiry, H.R., sétamou, M., Simpson, C.R., Abd El-Mageed, T.A., Rady, M.M., Nelson, S.D., (2019). Biochar implication for sustainable agriculture and environment: a review. South Afr.J.Bot. 127. 333-347.

Sarker, J.R., Singh, B.P., Fang, Y., Cowie, A.L., Dougherty, W.J., Collins, D., Dalal, R.C., Singh, B.K., (2019). Tillage history and crop residue input enhanced native carbon mineralisation and nutrient supply in contrasting soils under long-term farming systems. Soil tillage Res. 193, 71-84.

Su, Y., He, S., Wang. K., Shahtahmassebi, A.R., Zhang, L., Zhang, J., Zhang, M., Gan, M., (2020). Quantifying the sustainability of three types of agricultural production in China: an emergy analysis with the integration of environmental pollution. J. Clean. Prod. 252, 119650.

Smider B., Singh B., (2014). Agronomic performance of a high ash biochar in two contrasting soils. Agriculture, ecosystems and environment 191, 99-107.

Selmi A., Abassi M. (2013), politique foncière et utilisation optimale des terres, contribution à la réalisation d’une étude prospective sur « la sécurité alimentaire et environnementale en Tunisie », ITES.

Steiner, C., Teixeira, W.G., Lehmann, J., Nehls, T., Macedo, J.L.V., Blum, W.E.H. and Zech, W. (2007) Long Term Effects of Manure, Charcoal and Mineral Fertilization on Crop Production and Fertility on a Highly Weathered Central Amazonian Upland Soil. Plant and Soil, 291, 275-290.

Sun, F.F., Lu, S.G., (2014). Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 177, 26-33.

Singh, B., Singh, B.P., Cowie, A.L., (2010). Characterization and evaluation of biochar for their application as a soil amendment. Aust. J. Soil Res. 48, 516-525.

Trifunovic, B., Gonzalez, H.B., Ravi, S., Sharratt, B.S., Mohanty, S.K. (2018). Dynamic effect of biochar concentration and particle size on hydraulic properties of sand. Land Degrad. Dev. 29, 884-893.

Uzoma, K.C., et al (2011). Effect of cow manure biochar on productivity under sandy soil conditions. Soil use manage. 27, 205-212.

Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S. and Cowie, A. (2010) Effects of Biochar from Slow Pyrolysis of Papermill Waste on Agronomic Performance and Soil Fertility. Plant and Soil, 327, 235-246.

Villagra-Mendoza, K., Horn, R., (2018). Effect of biochar addition on hydraulic functions of two textural soils. Geoderma 326, 88-95.

West, L.T., Abreu, M.A., Bishop, J.P. (2008). Saturated hydraulic conductivity of soils in the southern piedmont of Georgia, USA: Field evaluation and relation to horizon and landscape properties. Catena 73, 174-179.

Wong, J.T.F., Chen, X.W., Ng, C.W.W., Wong, M.H., (2017). Soil-water retention behavior of compacted biochar-amended clay: novel landfill final cover material. J.Soil Sediments 17, 590-598.

Wong, J.T.F., Chen, Z.K., Wong, A.Y.Y., Ng, C.W.W., Wong, M.H., (2018). Effects of biochar on hydraulic conductivity of compacted kaolin clay. Environ. Pollt. 234, 468-472.

Xiao, R., Wang, J.J., Gaston, L.A., Zhou, B., Park, J.H., Li, R., Dodla, S.K., Zhang, Z., (2018). Biochar produced from mineral salt-impregnated chicken manure: fertility properties and potential for carbon sequestration. Waste Manag. 78, 802-810.

Yuan, J.H., Xu, R.K., (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol. Soil use and management 27, 110-115.

Zhang, J., Chen, Q., You, C.F., (2016). Biochar effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 265-272.

Downloads

Published

2022-09-30

How to Cite

Lamourou, H., Karbout, N., Zriba, Z., Rahma Zoghlami, I., & Ouessar, M. (2022). Green waste biochar effects on sandy soil physicochemical properties. JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT, 4(3), 38–47. https://doi.org/10.56027/JOASD.142022

Issue

Section

Articles

Plum Analytics

 Artifact Widget