Essential oils, chemical composition, and biological activities of Eucalyptus oleosa F. Muell. : A review
DOI:
https://doi.org/10.56027/JOASD.282023Keywords:
biological activities, Essential oil, Yield, Eucalyptus oleosa, CompositionAbstract
Many Eucalyptus species are growing in the border of oasis areas. Eucalyptus sp. are generally known for their richness in essential oils and their virtues and economic interests. However, the great taxonomic diversity affects the quantity and quality of these oils. This study is designed to summarize the chemical composition of Eucalyptus oleosa and their biological activities. The yield of essential oils in the leaves of this species varies from 0.45% to 6.7%. These oils contain many chemical compounds of which 1,8-cineole is the main component (15.31% – 89.4%) followed by α-pinene (1%– 24.7%). Eucalyptus oleosa essential oils exhibited antioxidant, antibacterial, anti-fungal and insecticidal activities with high variability. This variability is associated to many factors such as subspecific diversity, geographical location, part of plant and essential oil’s extraction method.
References
Ainane, A., Khammour, F., Charaf, S., Elabboubi, M., Elkouali, M., Talbi, M., Benhima, R., Cherroud, S., Ainane, T. (2019). Chemical composition and insecticidal activity of five essential oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Materials Today: Proceedings 13, 474-485.
Aldoghaim, F. S., Flematti, G. R., Hammer, K. A. (2018). Antimicrobial activity of several cineole-rich Western Australian Eucalyptus essential oils. Microorganisms 6, 122.
Alengebawy, A., Abdelkhalekn, S.T., Qureshi, S.R., Wang, M.Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9, 42.
Almas, I., Innocent, E., Machumi, F., Kisinza, W. (2018). Effect of Geographical location on yield and chemical composition of essential oils from three Eucalyptus species growing in Tanzania. Asian Journal of Traditional Medicines 14, 1-12.
Al-Snafi, A.E. (2017). The pharmacological and therapeutic importance of Eucalyptus species grown in Iraq. IOSR Journal of Pharmacy 7, 72-91.
Alzogaray, R.A., Lucia, A., Zerba, E.N., Masuh, H.M. (2011). Insecticidal activity of essential oils from eleven Eucalyptus spp. and two hybrids: lethal and sublethal effects of their major components on Blattella germanica. Journal of economic entomology 104, 595-600.
Barbosa, L.C.A., Filomeno, C.A., Teixeira, R.R. (2016). Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules 21, 1671.
Barra, A. (2009). Factors affecting chemical variability of essential oils: a review of recent developments. Natural product communications 4.
Batish, D.R., Singh, H.P., Setia, N., Kaur, S., Kohli, R.K. (2006). Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora. Zeitschrift für Naturforschung C 61, 465-471.
Ben Hassine, D., Ben Ismail, H., Jribi, C., Khouja, M.L., Abderrabba, M. (2012). Eucalyptus oleosa F. Muell essential oil: extraction, chemical composition and antimicrobial activity. In International symposium on Medicinal and Aromatic Plants-SIPAM 997, 77-82.
Ben Marzoug, H.N., Bouajila, J., Ennajar, M., Lebrihi, A., Mathieu, F., Couderc, F., Abderraba, M., Romdhane, M. (2010). Eucalyptus (gracilis, oleosa, salubris and salmonophloia) essential oils: their chemical composition and antioxidant and antimicrobial activities. Journal of medicinal food 13, 1005-1012.
Bignell, C.M., Dunlop, P.J., Brophy, J.J., Jackson, J.F. (1995). Volatile leaf oils of some South‐western and Southern Australian species of the genus Eucalyptus. Part V. subgenus symphyomyrtus, section bisectaria, series oleosae. Flavour and fragrance journal 10, 313-317.
Booth, T.H. (2013). Eucalypt plantations and climate change. Forest ecology and management 301, 28-34.
Boukhatem, M.N., Boumaiza, A., Nada, H.G., Rajabi, M., Mousa, S.A. (2020). Eucalyptus globulus essential oil as a natural food preservative: Antioxidant, antibacterial and antifungal properties in vitro and in a real food matrix (orangina fruit juice). Applied Sciences 10, 5581.
Brewer, M.S. (2011). Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comprehensive reviews in food science and food safety 10, 221-247.
Chamali, S., Bendaoud, H., Saadaoui, E., Elfalleh, W., Romdhane, M. (2019). A new process for green extraction of essential oil from Eucalyptus oleosa: Microwave-assisted hydro distillation. Arabian Journal of Medicinal and Aromatic Plants 5, 35-46.
Ciftci, O., Ozdemir, I., Tanyildizi, S., Yildiz, S., Oguzturk, H. (2011). Antioxidative effects of curcumin, β-myrcene and 1, 8-cineole against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicology and industrial health 27, 447-453.
Crisp, M.D., Burrows, G.E., Cook, L.G., Thornhill, A.H., Bowman, D.M. (2011). Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nature Communications 2, 1-8.
Damjanović-Vratnica, B., Đakov, T., Suković, D., Damjanović, J. (2011). Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech Journal of Food Sciences 29, 277-284.
Dhakad, A.K., Pandey, V.V., Beg, S., Rawat, J.M., Singh, A. (2018). Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review. Journal of the Science of Food and Agriculture 98, 833-848.
Dorsaf, B.H., Hanen, B.I., Chokri, J., Larbi, K.M., Manef, A. (2016). Chemical composition of some Tunisian Eucalyptus essential oils as obtained by hydrodistillation using Clevenger type apparatus. Biosciences Biotechnology Research Asia 7, 647-656.
Ebadollahi, A., Rahimi-Nasrabadi, M., Batooli, H., Geranmayeh, J. (2013). Evaluation of the insecticidal activities of three Eucalyptus species cultivated in Iran, against Hyphantria Cunea Drury (Lepidoptera: Arctiidae). Journal of Plant Protection Research 53.
Ebadollahi, A., Sendi, J.J., Maroufpoor, M., Rahimi-Nasrabadi, M. (2017). Acaricidal potentials of the terpene-rich essential oils of two Iranian Eucalyptus species against Tetranychus urticae Koch. Journal of oleo science 66,307-314.
Elaissi, A., Chraif, I., Bannour, F., Farhat, F., Salah, M. B., Chemli, R., Khouja, M.L. (2007). Contribution to the qualitative and quantitative study of seven Eucalyptus species essential oil harvested of Hajeb’s Layoun arboreta (Tunisia). Journal of Essential Oil Bearing Plants 10, 15-25.
Fadel, H., Mar, F., El-Sawy, A., El-Ghorab, A. (1999). Effect of extraction techniques on the chemical composition and antioxidant activity of Eucalyptus camaldulensis var. brevirostris leaf oils. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 208, 212-216.
Fathi, E., Sefidkon, F. (2012). Influence of drying and extraction methods on yield and chemical composition of the essential oil of Eucalyptus sargentii. Journal of Agricultural Science and Technology 14, 1035-1042.
Filomeno, C.A., Barbosa, L.C.A., Teixeira, R.R., Pinheiro, A.L., de Sá Farias, E., de Paula Silva, E.M., Picanço, M.C. (2017). Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Industrial crops and products 109, 374-383.
Ghaffar, A., Yameen, M., Kiran, S., Kamal, S., Jalal, F., Munir, B., Salim, S., Rafiq, N., Ahmad, A., Saba, I., Jabbar, A. (2015). Chemical composition and in-vitro evaluation of the antimicrobial and antioxidant activities of essential oils extracted from seven Eucalyptus species. Molecules 20, 20487-20498.
Ghosh, A., Chowdhury, N., Chandra, G. (2012). Plant extracts as potential mosquito larvicides. The Indian journal of medical research 135, 581.
Gilles, M., Zhao, J., An, M., Agboola, S. (2010). Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chemistry 119, 731-737.
Grattapaglia, D., Vaillancourt, R.E., Shepherd, M., Thumma, B.R., Foley, W., Külheim, C., Potts, B.M., Myburg, A.A. (2012). Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genetics & Genomes 8, 463-508.
Hashemi-Moghaddam, H., Kalatejari, A., Afshari, H., Ebadi, A.H. (2013). Microwave accelerated distillation of essential oils from the leaves of Eucalyptus microtheca: Optimization and comparison with conventional hydrodistillation. Asian Journal of Chemistry 25, 5423-5427.
Hassanpouraghdam, M.B., Akhgari, A.B., Aazami, M.A., Emarat-Pardaz, J. (2011). New menthone type of Mentha pulegium L. volatile oil from Northwest Iran. Czech Journal of Food Sciences 29, 285-290.
He, C., Murray FLyons, T. (2000). Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia. Atmospheric Environment 34, 645-655.
Ho, J.C. (2010). Chemical composition and bioactivity of essential oil of seed and leaf from Alpinia speciosa grown in Taiwan. Journal of the Chinese Chemical Society 57, 758-763.
Hobbs, T.J., Bennell, M., Bartle, J. (2009). Developing species for woody biomass crops in lower rainfall southern Australia. Flora Search 3a. Report to the Joint Venture Agroforestry Program (JVAP) and Future Farm Industries CRC. Publication 242.
Horváth, G., Ács, K. (2015). Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti‐inflammatory action: a review. Flavour and Fragrance Journal 30, 331-341.
Isman, M.B. (2000). Plant essential oils for pest and disease management. Crop protection 19, 603-608.
Jaymand, K., Rezaei, M.B., Naderi, H.B.M. (2009). Volatile oil constituents of the Eucalyptus viridis RT Baker and Eucalyptus oleosa F. Muell. leaves from Iran. Journal of Medicinal Plans 8, 105-108.
Kokkini, S., Hanlidou, E., Karousou, R., Lanaras, T. (2004). Clinal variation of Mentha pulegium essential oils along the climatic gradient of Greece. Journal of Essential Oil Research 16, 588-593.
Kouki, H., Amri, I., Souihi, M., Pieracci, Y., Trabelsi, I., Hamrouni, L., Flamini, G., Hirsch, A.M., Mabrouk, Y. (2023). Chemical composition, antioxidant, herbicidal and antifungal activities of leaf essential oils from three Tunisian Eucalyptus species. Journal of Plant Diseases and Protection 1-12.
Maciel, M.V., Morais, S.M., Bevilaqua, C.M.L., Silva, R.A., Barros, R.S., Sousa, R.N., Sousa, R.N., Brito, E.S., Souza-Neto, M.A. (2010). Chemical composition of Eucalyptus spp. essential oils and their insecticidal effects on Lutzomyia longipalpis. Veterinary parasitology 167, 1-7.
Maghsoodlou, M.T., Kazemipoor, N., Valizadeh, J., Seifi, M.F.N., Rahneshan, N. (2015). Essential oil composition of Eucalyptus microtheca and Eucalyptus viminalis. Avicenna journal of Phytomedicine 5, 540.
Mahmood, I., Imadi, S.R., Shazadi, K., Gul, A., & Hakeem, K.R. (2016). Effects of pesticides on environment. Plant, soil and microbes: volume 1: implications in crop science 253-269.
Marzoug, H.N.B., Romdhane, M., Lebrihi, A., Mathieu, F., Couderc, F., Abderraba, M., Khouja, M.A., Bouajila, J. (2011). Eucalyptus oleosa essential oils: chemical composition and antimicrobial and antioxidant activities of the oils from different plant parts (stems, leaves, flowers and fruits). Molecules 16, 1695-1709.
Merchant, A., Tausz, M., Arndt, S.K., Adams, M.A. (2006). Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell & Environment 29, 2017-2029.
Migacz, I.P., Raeski, P.A., Almeida, V.P.D., Raman, V., Nisgoski, S., Muniz, G.I.B.D., Farago, P.V., Khan, I.A., Budel, J.M. (2018). Comparative leaf morpho-anatomy of six species of Eucalyptus cultivated in Brazil. Revista Brasileira de Farmacognosia 28, 273-281.
Moon, J.K., Shibamoto, T. (2009). Antioxidant assays for plant and food components. Journal of agricultural and food chemistry 57, 1655-1666.
Nakamura, T., Yoshida, N., Yamanoi, Y., Honryo, A., Tomita, H., Kuwabara, H., Kojima, Y. (2020). Eucalyptus oil reduces allergic reactions and suppresses mast cell degranulation by downregulating IgE-FcεRI signalling. Scientific reports 10, 1-15.
Ndiaye, E.H.B., Diop, M.B., Gueye, M.T., Ndiaye, I., Diop, S.M., Fauconnier, M.L., Lognay, G. (2018). Characterization of essential oils and hydrosols from senegalese Eucalyptus camaldulensis Dehnh. Journal of essential oil research 30, 131-141.
Ohara, K., Matsunaga, E., Nanto, K., Yamamoto, K., Sasaki, K., Ebinuma, H., & Yazaki, K. (2010). Monoterpene engineering in a woody plant Eucalyptus camaldulensis using a limonene synthase cDNA. Plant biotechnology journal 8, 28-37.
Pant, M., Dubey, S., Patanjali, P.K., Naik, S.N., Sharma, S. (2014). Insecticidal activity of Eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. International Biodeterioration & Biodegradation 91, 119-127.
Papachristos, D.P., Karamanoli, K.I., Stamopoulos, D.C., Menkissoglu‐Spiroudi, U. (2004). The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Management Science: Formerly Pesticide Science 60, 514-520.
Pino, J.A., Marbot, R., Quert, R., García, H. (2002). Study of essential oils of Eucalyptus resinifera Smith, E. tereticornis Smith and Corymbia maculata (Hook.) KD Hill & LAS Johnson, grown in Cuba. Flavour and fragrance journal 17, 1-4.
Pinto, M., Soares, C., Martins, M., Sousa, B., Valente, I., Pereira, R., Fidalgo, F. (2021). Herbicidal effects and cellular targets of aqueous extracts from young Eucalyptus globulus Labill. Leaves. Plants 10, 1159.
Pittendrigh, B.R., Margam, V.M., Sun, L., Huesing, J.E. (2008). Resistance in the postgenomics age. Insect resistance management: Biology, economics and prediction 39-68.
Pourmortazavi, S.M., Rahimi-Nasrabadi, M., Aghazadeh, M., Ganjali, M.R., Karimi, M.S., Norouzi, P. (2017). Synthesis, characterization and photocatalytic activity of neodymium carbonate and neodymium oxide nanoparticles. Journal of Molecular Structure 1150, 411-418.
Pourmortazavi, S.M., Taghdiri, M., Makari, V., Rahimi-Nasrabadi, M. (2015). Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136, 1249-1254.
Rahimi-Nasrabadi, M., Nazarian, S., Farahani, H., Fallah Koohbijari, G.R., Ahmadi, F., Batooli, H. (2013). Chemical composition, antioxidant, and antibacterial activities of the essential oil and methanol extracts of Eucalyptus largiflorens F. Muell. International Journal of Food Properties 16, 369-381.
Rajendran, S., Sriranjini, V. (2008). Plant products as fumigants for stored-product insect control. Journal of stored products Research 44, 126-135.
Richter, J., Schellenberg, I. (2007). Comparison of different extraction methods for the determination of essential oils and related compounds from aromatic plants and optimization of solid-phase microextraction/gas chromatography. Analytical and bioanalytical chemistry 387, 2207-2217.
Saadaoui, E., Yahia, K.B., Dhahri, S., Jamaa, M.L.B., Khouja, M.L. (2017). An overview of adaptative responses to drought stress in Eucalyptus spp. Forestry Studies 67, 86-96.
Sabo, V.A., Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial crops and products 132, 413-429.
Safaei-Ghomi, J., Shahroodi, F., Batooli, H. (2009). Volatile constituents of the flowers and leaves of Eucalyptus oleosa cultivated in central Iran. Chemistry of natural compounds 45, 106-107.
Salehi, B., Sharifi-Rad, J., Quispe, C., Llaique, H., Villalobos, M., Smeriglio, A., Trombetta, D., Ezzat, M.S., Salem, M.A., Zayed, A., Castillo, C.M.S., Yazdi, S.E., Sen, S., Acharya, K., Sharopov, F., Martins, N. (2019). Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects. Trends in Food Science & Technology 91, 609-624.
Salem, M.Z., Ashmawy, N.A., Elansary, H.O., El-Settawy, A.A. (2015). Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils. Natural Product Research 29, 681-685.
Santos, F.A., Rao, V.S.N. (2001). 1, 8-cineol, a food flavoring agent, prevents ethanol-induced gastric injury in rats. Digestive diseases and sciences 46, 331-337.
Sawalha, H., Abiri, R., Sanusi, R., Shaharuddin, N.A., Noor, A.A.M., Ab-Shukor, N.A., Abdul-Hamid, H., Ahmad, S.A. (2021). Toward a better understanding of metal nanoparticles, a novel strategy from Eucalyptus plants. Plants 10, 929.
Schürmann, M., Oppel, F., Gottschalk, M., Büker, B., Jantos, C.A., Knabbe, C., Hutten, A., Kaltschmidt, B., Kaltschmidt, C., Sudhoff, H. (2019). The therapeutic effect of 1, 8-cineol on pathogenic bacteria species present in chronic rhinosinusitis. Frontiers in microbiology 10, 2325.
Sebei, K., Sakouhi, F., Herchi, W., Khouja, M.L., Boukhchina, S. (2015). Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biological research 48, 1-5.
Shahidi, F., Zhong, Y. (2015). Measurement of antioxidant activity. Journal of functional foods 18, 757-781.
Sharma, A.D., Kaur, I. (2020). Eucalyptol (1, 8 cineole) from Eucalyptus essential oil a potential inhibitor of COVID 19 corona virus infection by molecular docking studies. Preprints, 2020030455.
Silva, J., Abebe, W., Sousa, S.M., Duarte, V.G., Machado, M.I.L., Matos, F.J.A. (2003). Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. Journal of ethnopharmacology 89, 277-283.
Srinivasan. D., Nathan, S., Suresh, T., Perumalsamy, P.L. (2001). Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. Journal of ethnopharmacology 74, 217-220.
Sudhoff, H., Klenke, C., Greiner, J.F., Müller, J., Brotzmann, V., Ebmeyer, J., Kaltschmidt, B., Kaltschmidt, C. (2015). 1, 8-Cineol reduces mucus-production in a novel human ex vivo model of late rhinosinusitis. PLoS One 10.
Tarelli, G., Zerba, E.N., Alzogaray, R.A. (2009). Toxicity to vapor exposure and topical application of essential oils and monoterpenes on Musca domestica (Diptera: Muscidae). Journal of economic entomology 102, 1383-1388.
Upadhyay, R.K. (2022). Therapeutic and insecticidal potential of plant terpenes: A review. International Journal of Green Pharmacy 16.
Vilela, G.R., de Almeida, G.S., D'Arce, M.A.B.R., Moraes, M.H.D., Brito, J.O., da Silva, M.F.D.G.F., Silva, S.C., Piedade, S.M.D.F., Calori-Domingues, M.A., da Gloria, E.M. (2009). Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. Journal of Stored Products Research 45, 108-111.
Vivekanandhan, P., Usha-Raja-Nanthini, A., Valli, G., Subramanian, S.M. (2020). Comparative efficacy of Eucalyptus globulus (Labill) hydrodistilled essential oil and temephos as mosquito larvicide. Natural product research 34, 2626-2629.
Vuong, Q.V., Chalmers, A.C., Jyoti, B.D., Bowyer, M.C., Scarlett, C.J. (2015). Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chemistry & biodiversity 12, 907-924.
Zhao, C., Sun, J., Fang, C., Tang, F. (2014). 1, 8-cineol attenuates LPS-induced acute pulmonary inflammation in mice. Inflammation 37, 566-572.
Zrira, S., Bessiere, J.M., Menut, C., Elamrani, A., Benjilali, B. (2004). Chemical composition of the essential oil of nine Eucalyptus species growing in Morocco. Flavour and fragrance journal 19, 172-175.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/
Plum Analytics
Artifact Widget