Identification of genetic basis of agronomic traits in alfalfa (Medicago sativa subsp. sativa) using Genome Wide Association Studies

Authors

  • Wiem Mnafgui
  • Cheima Jabri
  • Muhammet Sakiroglu
  • Ndiko Ludidi
  • Mounawer Badri

DOI:

https://doi.org/10.56027/JOASD.082023

Keywords:

Genome-wide association, Medicago sativa, Quantitative trait loci, Salinity tolerance, Forage quality, Marker-trait association

Abstract

Alfalfa (Medicago sativa L.) is one of the most widely cultivated forage crops due to its high yield, value of nutrients, and adaptation to diverse environments. However, many of the desired agronomic traits in alfalfa are quantitative, and therefore improving them under abiotic and biotic stresses becomes an important goal in alfalfa breeding. One way to achieve such a goal is identification of loci that contribute to variation in complex traits. Genome Wide Association Studies (GWAS) provide advanced tools to identify genetic loci associated with traits of interest using high-density markers throughout the genome. In M. sativa, previous studies indicated that GWAS could identify numerous candidate single nucleotide polymorphism (SNP) markers for quantitative traits, including biomass, yield, forage quality, and drought/salt tolerance. Furthermore, mapping SNP markers against the M. sativa reference genome revealed many putative candidate genes which are associated with several cell wall-related traits. In this review, we summarize Genome Wide Association (GWAS) in alfalfa from concept to application and the identification and characterization of candidate genes for traits of interest.

References

Adhikari, L., Lindstrom, O. M., Markham, J., Missaoui, A. M. (2018). Dissecting key adaptation traits in the polyploid perennial Medicago sativa using GBS-SNP mapping. Frontiers in Plant Science, 9, 1–19.

Afzal, M., Hindawi, S.E.S., Alghamdi, S.S., Migdadi, H.H., Khan, M.A., Hasnain, M.U., Arslan, M., Habib ur Rahman, M., Sohaib, M. (2022). Potential breeding strategies for improving salt tolerance in crop plants. Journal of Plant Growth Regulation (0123456789).

Al-Farsi, S. M., Nadaf, S. K., Al-Sadi, A. M., Ullah, A., Farooq, M. (2020). Evaluation of indigenous Omani alfalfa landraces for morphology and forage yield under different levels of salt stress. Physiology and Molecular Biology of Plants, 26(9), 1763–1772.

Alqudah AM, Sallam A, Stephen Baenziger P, Börner A. (2020) GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. Journal of Advanced Research, 22, 119–135.

Alseekh, S., Kostova, D., Bulut, M., Fernie, A. R. (2021). Genome-wide association studies: assessing trait characteristics in model and crop plants. Cellular and Molecular Life Sciences, 78(15), 5743–5754.

Alves, M.L., Carbas, B., Gaspar, D., Paulo, M., Brites, C., Mendes-Moreira, P., Brites, C.M., Malosetti, M., Van Eeuwijk, F., Vaz Patto, M.C. (2019). Genome-wide association study for kernel composition and flour pasting behavior in wholemeal maize flour. BMC Plant Biology. 19, 1–17.

Annicchiarico, P. (2021). Breeding gain from exploitation of regional adaptation: An alfalfa case study. Crop Science, 61(4), 2254–2271.

Annicchiarico, P., B. Barrett, E.C. Brummer, B. Julier, and A.H. Marshall. (2015) Achievements and challenges in improving temperate perennial forage legumes. Crit. Revue. Plant Science. 34:327–380.

Asimit, J., Day-Williams, A., Morris, A., and Zeggini, E. (2012). Testing for an accumulation of rare variants using next- generation sequencing data. Hum. Hered. 73:84–94.

Azzam, C., Abd El Naby, Z., Mohamed, N. (2019). Salt Tolerance Associated With Molecular Markers in Alfalfa. Journal of Bioscience and Applied Research, 5(4), 416–428.

Badri,M., Ben Cheikh, N., Mahjoub, A., Abdelly, C. (2016). Morpho-phenological diversity among natural populations of Medicago polymorpha of different Tunisian ecological areas. African Journal of Biotechnology, 15(25), 1330–1338.

Badri, M., Rafik, K., Jabri, C., Ludidi, N. (2021). Analysis of salinity tolerance in two varieties of Medicago sativa at the vegetative stage. Journal of Oasis Agriculture and Sustainable Development, (Special), 25–29.

Bagavathiannan, M.V., Julier, B., Barre, P., Gulden, R.H., and Van Acker, R.C. (2010). Genetic diversity of feral alfalfa (Medicago sativa L.) populations occurring in Manitoba, Canada and comparison with alfalfa cultivars: an analysis using SSR markers and phenotypic traits. Euphytica. 173: 419-432.

Benabderrahim, M. A., Elfalleh, W. (2021). Forage potential of non-native guinea grass in north african agroecosystems: Genetic, agronomic, and adaptive traits. Agronomy, 11(6), 1–10.

Bhattarai, S., Biswas, D., Fu, Y. B., Biligetu, B. (2020). Morphological, physiological, and genetic responses to salt stress in alfalfa: A review. Agronomy, 10(4), 1–15.

Biazzi, E., Nazzicari, N., Pecetti, L., Annicchiarico, P. (2019). GBS-based genome-wide association and genomic selection for alfalfa (Medicago sativa) forage quality improvement. The Model Legume Medicago Truncatula, 923–927.

Biazzi, E., Nazzicari, N., Pecetti, L., Brummer, E. C., Palmonari, A., Tava, A., Annicchiarico, P. (2017). Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS ONE, 12(1), 1–17.

Bilton, T.P., McEwan, J.C., Clarke, S.M., Brauning, R., Stijn, T.C., Rowe, S.J., Dodds, K.G. (2018). Linkage disequilibrium estimation in low coverage high-throughput sequencing data. Genetics, 209:389–400

Burghardt, L. T., Young, N. D., Tiffin, P. (2017). A Guide to Genome-Wide Association Mapping in Plants. Current Protocols in Plant Biology, 2(1), 22–38.

Chen, K., Wang, Y., Zhang, R., Zhang, H. and Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual review of plant biology journal. 70, 667–697.

Cubry, P., Pidon, H., Ta, K.N., Tranchant-Dubreuil, C., Thuillet, A.C., Holzinger, M., Adam, H., Kam, H., Chrestin, H., Ghesquière, A., François, O., Sabot, F., Vigouroux, Y., Albar, L., Jouannic, S. (2020). Genome Wide Association Study Pinpoints Key Agronomic QTLs in African Rice Oryza glaberrima. Rice. 13, 1–12

Feng H, Guo Z, Yang W, Huang C, Chen G, Fang W. (2019). An integrated hyperspectral imaging and genome-wide association analysis platform provides spectral and genetic insights into the natural variation in rice. Scientific Report, 7:4401.

Gupta, P. K., Kulwal, P. L., Jaiswal, V. (2019). Chapter Two Association mapping in plants in the post-GWAS genomics era. In D. Kumar (Ed.), Advances in Genetics. pp. 75 154.

Hawkins, C., Yu, L. X. (2018). Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop Journal, 6(6), 565–575.

Hayes, B., Goddard, M. (2010). Genome-wide association and genomic selection in animal breeding. Genome, 53(11), 876–883.

He, F., Wei, C., Zhang, Y., Long, R., Li, M., Wang, Z., Yang, Q., Kang, J., Chen, L. (2022). Genome-Wide Association Analysis Coupled With Transcriptome Analysis Reveals Candidate Genes Related to Salt Stress in Alfalfa (Medicago sativa L.). Frontiers in Plant Science, 12, 1–12.

Hrbáčková, M., Dvořák, P., Takáč, T., Tichá, M., Luptovčiak, I., Šamajová, O., Ovečka, M., Šamaj, J. (2020). Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. Frontiers in Plant Science, 11.

Ibrahim, A. K., Liwu, Z., Sylvain, N., Muhammad, Z. A., Yi, X., Lilan, Z., Liemei, Z., Jianmin, Q.i. (2020). Principles and approaches of association mapping in plant breeding. Tropical Plant Biology. 13(3):212–24.

Houle, D., Govindaraju, D.R, Omholt, S. (2010). Phenomics: The next challenge. Nature review genetics 11, 855.

Huang, B.E., George, A.W., Forrest, K.L., Killian, A., Hayden, M.J., Morell, M.K., Cavanagh, C.R. (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnology. 10, 826–839.

Inostroza, L., Espinoza, S., Barahona, V., Gerding, M., Humphries, A., Del Pozo, A., Ovalle, C. (2021). Phenotypic diversity and productivity of medicago sativa subspecies from drought-prone environments in mediterranean type climates. Plants, 10(5).

Jia, C., Wu, X., Chen, M., Wang, Y., Liu, X., Gong, P., Xu, Q., Wang, X., Gao, H., Wang, Z. (2017). Identification of genetic loci associated with crude protein and mineral concentrations in alfalfa (Medicago sativa) using association mapping. BMC Plant Biology, 17(1), 1–7.

Jiang, J., Yang, B. L., Xia, T., Yu, S. M., Wu, Y. N., Jin, H., Li, J. R. (2015). Analysis of genetic diversity of salt-tolerant alfalfa germplasms. Genetics and Molecular Research, 14(2), 4438–4447.

Kimani, W., Zhang, L.M., Wu, X.Y., Hao, H.Q., Jing, H.C.(2020). Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics 21, 1–19.

Kondratyev, N. V., Alfimova, M. V., Golov, A. K., Golimbet, V. E. (2021). Bench research informed by gwas results. Cells, 10(11).

Kumar, P., Singh, J., Kaur, G., Adunola, P.M., Biswas, A., Bazzer, S., Kaur, H., Kaur, I., Kaur, H., Sandhu, K.S., Vemula, S., Kaur, B., Singh, V., Tseng, T.M. (2022). OMICS in Fodder Crops: Applications, Challenges, and Prospects. Current Issues in Molecular Biology, 44(11), 5440–5473.

Kumar, S. (2011). Biotechnological advancements in alfalfa improvement. Journal of Applied Genetics, 52(2), 111–124.

Larkin, D. L., Lozada, D. N., Mason, R. E. (2019). Genomic selection—considerations for successful implementation in wheat breeding programs. Agronomy, 9(9), 1–18.

Li, B. (2020). Identification of genes conferring plant salt tolerance using GWAS: Current success and perspectives. Plant and Cell Physiology, 61(8), 1419–1426.

Li, D., Dossa, K., Zhang, Yanxin, Wei, X., Wang, L., Zhang, Yujuan, Liu, A., Zhou, R., Zhang, X. (2018). GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes (Basel). 9.

Li, M., Liu, X., Bradbury, P. J., Yu, J., Zhang, Y. M., Todhunter, R. J., Zhang, Z. (2014). Enrichment of statistical power for genome wide association studies. BMC Biology, 12, 73.

Li, X., Alarcón-Zúñiga, B., Kang, J., Tahir, M.H.N., Jiang, Q., Wei, Y., Reyno, R., Robins, J.G., Brummer, E.C. (2015). Mapping fall dormancy and winter injury in tetraploid alfalfa. Crop Science, 55(5), 1995–2011.

Li, X., Brummer, E. C. (2012). Applied genetics and genomics in alfalfa breeding. Agronomy, 2(1), 40–61.

Lin, M., Matschi, S., Vasquez, M., Chamness, J., Kaczmar, N., Baseggio, M., Miller, M., Stewart, E.L., Qiao, P., Scanlon, M.J., Molina, I., Smith, L.G., Gore, M.A. (2020). Genome-wide association study for maize leaf cuticular conductance identifies candidate genes involved in the regulation of cuticle development. G3 Genes, Genomes, Genetic. 10, 1671–1683.

Lin, S., Medina, C. A., Boge, B., Hu, J., Fransen, S., Norberg, S., Yu, L. X. (2020). Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biology, 20(1), 1–18.

Lin, S., Medina, C.A., Norberg, O.S., Combs, D., Wang, G., Shewmaker, G., Fransen, S., Llewellyn, D., Yu, L.X. (2021). Genome-Wide Association studies identifying multiple loci associated with alfalfa forage quality. Frontiers in Plant Science, 12(June), 1–15.

Liu, X., Hawkins, C., Peel, M. D., Yu, L. (2019). Genetic Loci Associated with Salt Tolerance in Advanced Breeding Populations of Tetraploid Alfalfa Using Genome‐Wide Association Studies. The Plant Genome, 12(1), 180026.

Liu, X. P., Yu, L. X. (2017). Genome-wide association mapping of loci associated with plant growth and forage production under salt stress in alfalfa (Medicago sativa L.). Frontiers in Plant Science, 8, 1–13.

Lu, K., Wei, L., Li, X., Wang, Y., Wu, J., Liu, M., Zhang, C., Chen, Z., Xiao, Z., Jian, H., Cheng, F., Zhang, K., Du, H., Cheng, X., Qu, C., Qian, W., Liu, L., Wang, R., Zou, Q., Ying, J., Xu, X., Mei, J., Liang, Y., Chai, Y.R., Tang, Z., Wan, H., Ni, Y., He, Y., Lin, N., Fan, Y., Sun, W., Li, N.N., Zhou, G., Zheng, H., Wang, X., Paterson, A.H., Li, J. (2019). Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nature. Commun. 10, 1–12.

Ma, J., Huangfu, W., Yang, X., Xu, J., Zhang, Y., Wang, Z., Zhu, X., Wang, C., Shi, Y., Cui, Y. (2022). “King of the forage”—Alfalfa supplementation improves growth, reproductive performance, health condition and meat quality of pigs. Frontiers in Veterinary Science, 9.

Martins,T.F , Magalhães, A.F.b, Verardo,L.L, Santos,G.C Fernandes,A.A.S , Vieira, J I G, Irano N, dos Santos, DB. (2022). Functional analysis of litter size and number of teats in pigs: From GWAS to post-GWAS.Theriogenology,193,157-166

Medina, C. A., Hawkins, C., Liu, X. P., Peel, M., Yu, L. X. (2020). Genome-wide association and prediction of traits related to salt tolerance in autotetraploid alfalfa (Medicago sativa l.). International Journal of Molecular Sciences, 21(9), 1–25.

Michael, T. P., Jackson, S. (2013). The first 50 plant genomes. The Plant Genome, 6, 1–7.

Mitchell-Olds, T. (2010) Complex-trait analysis in plants. Genome Biology, 11(4), 1–3.

Morris, G.P., Ramu, P., Deshpande, S.P., Hash, C.T., Shah, T., Upadhyaya, H.D., Riera-Lizarazu, O., Brown, P.J., Acharya, C.B., Mitchell, S.E., Harriman, J., Glaubitz, J.C., Buckler, E.S., Kresovich, S. (2013). Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 453–458.

Munjal, G., Hao, J., Teuber, L. R., & Brummer, E. C. (2018). Selection mapping identifies loci underpinning autumn dormancy in alfalfa (Medicago sativa). G3: Genes, Genomes, Genetics, 8(2), 461-468.

Nagl, N., Taski-Ajdukovic, K., Barac, G., Baburski, A., Seccareccia, I., Milic, D., Katic, S. (2011). Estimation of the genetic diversity in tetraploid alfalfa populations based on RAPD markers for breeding purposes. International Journal of Molecular Sciences, 12(8), 5449–5460.

Nakano, Y., Kobayashi, Y. (2020). Genome-wide association studies of agronomic traits consisting of field-and molecular-based phenotypes. Reviews in Agricultural Science, 8(1), 28–45.

Naveed, SA., Zhang, F., Zhang, J., Zheng, T-Q., Meng, L-J., Pang, Y-L., Xu, J-L., Li, Z-K. (2018) Identification of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome-wide association analyses. Science Report 8(1):1–11

Pierre, J. B., Bogard, M., Herrmann, D., Huyghe, C., Julier, B. (2011). A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Molecular Breeding, 28(1), 25–35.

Ray, I.M., Han, Y., Lei, E., Meenach, C.D., Santantonio, N., Sledge, M.K., Pierce, C.A., Sterling, T.M., Kersey, R.K., Bhandari, H.S., Monteros, M.J. (2015). Identification of quantitative trait loci for alfalfa forage biomass productivity during drought stress. Crop Science, 55(5), 2012–2033.

Raza, A., Tabassum, J., Fakhar, A.Z., Sharif, R., Chen, H., Zhang, C., Ju, L., Fotopoulos, V., Siddique, K.H.M., Singh, R.K., Zhuang, W., Varshney, R.K. (2022). Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology, 0(0), 1–28.

Resende, R.T., de Resende, M.D. V., Azevedo, C.F., Silva, F.F. e., Melo, L.C., Pereira, H.S., Souza, T.L.P.O., Valdisser, P.A.M.R., Brondani, C., Vianello, R.P. (2018). Genome-wide association and Regional Heritability Mapping of plant architecture, lodging and productivity in phaseolus vulgaris. G3 Genes, Genomes, Genet. 8, 2841–2854.

Robins, J. G., Bauchan, G. R., Brummer, E. C. (2007). Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid Alfalfa (Medicago sativa L.). Crop Science, 47(1), 11–18.

Şakiroğlu, M. (2021). Population Genomics of Perennial Temperate Forage Legumes.

Şakiroğlu, M., Doyle, J. J., & Charles Brummer, E. (2010). Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Theoretical and applied genetics, 121, 403-415.

Sakiroglu, M., Brummer, E. C. (2017). Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. Theoretical and Applied Genetics, 130(2), 261–268.

Şakiroğlu, M., Kang, Y. (2022). Genome-Wide Association Studies in Medicago truncatula, Compendium of Plant Genomes (Medicago truncatula Genome),11–22.

Sakiroglu, M., & Kaya, M. M. (2012). Estimating genome size and confirming ploidy levels of wild tetraploid alfalfa accessions (Medicago sativa subsp.× varia) using flow cytometry. Turkish. Journal of Field Crop, 17, 151-156.

Sakiroglu, M., Sherman-Broyles, S., Story, A., Moore, K. J., Doyle, J. J., Charles Brummer, E. (2012). Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.). Theoretical and Applied Genetics, 125(3), 577–590.

San-Cristobal, R., de Toro-Martín, J., Vohl, M. C. (2022). Appraisal of Gene-Environment Interactions in GWAS for Evidence-Based Precision Nutrition Implementation. Current Nutrition Reports, 563–573.

Segovia-Lerma, A., Cantrell, R.G., Conway, J.M., Ray, I.M. (2003). AFLP-based assessment of genetic diversity among nine alfalfa germplasms using bulk DNA templates. Genome 46, 51–58.

Shen, C., Du, H., Chen, Z., Lu, H., Zhu, F., Chen, H., Meng, X., Liu, Q., Liu, P., Zheng, L., Li, X., Dong, J., Liang, C., Wang, T. (2020). The Chromosome-Level Genome Sequence of the Autotetraploid Alfalfa and Resequencing of Core Germplasms Provide Genomic Resources for Alfalfa Research. Molecular Plant, 13(9), 1250–1261.

Su, J., Li, L., Zhang, C., Wang, C., Gu, L., Wang, H., Wei, H., Liu, Q., Huang, L., Yu, S. (2018). Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theoretical and Applied Genetics 131, 1299–1314.

Taylor, M., Tornqvist, C.E., Zhao, X., Grabowski, P, Doerge, R., Ma, J., Volenec, J., Evans, J., Ramstein, GP., Sanciangco, M.D., Buell, C.R., Casler, M.D, Jiang, Y. (2018) Genome-Wide Association Study in pseudo-F2 populations of switchgrass identifies genetic loci affecting heading and anthesis dates. Frontiers in plant science, 13;9:1250 .

Tibbs Cortes, L., Zhang, Z., Yu, J. (2021). Status and prospects of genome-wide association studies in plants. Plant Genome, 14(1), 1–17.

Tondelli, A., Xu, X., Moragues, M., Sharma, R., Schnaithmann, F., Ingvardsen, C., Manninen, O., Comadran, J., Russell, J., Waugh, R. (2013) Structural and temporal variation in genetic diver- sity of European spring two-row barley cultivars and asso- ciation mapping of quantitative traits. Plant Genome, 6(2).

Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A. and Yang, J. (2017) 10 years of GWAS discovery: biology, function, and translation. American. Journal. Human. Genetic, 101, 5–22

Wang, X., Xu, Y., Hu, Z., Xu, C. (2018). Genomic selection methods for crop improvement: Current status and prospects. Crop Journal, 6(4), 330–340.

Wang, Z., Wang, X., Zhang, H., Ma, L., Zhao, H., Jones, C.S., Chen, J., Liu, G. (2020). A genome-wide association study approach to the identification of candidate genes underlying agronomic traits in alfalfa (Medicago sativa L.). Plant Biotechnology Journal, 18(3), 611–613.

Wen, Y. J., Zhang, H., Ni, Y. L., Huang, B., Zhang, J., Feng, J. Y., Wu, R. (2018). Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Briefings in Bioinformatics, 19, 700–712

Wessinger, C.A,, Kelly, J.K,, Jiang, P., Rausher, M.D., Hileman, L.C. (2018). SNP- skimming: A fast approach to map loci generating quantitative variation in natural populations. Molecular Ecology Resources, 18:1402–1414.

Xiao, Q., Bai, X., Zhang, C., He, Y. (2022). Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. Journal of Advanced Research, 35, 215–230.

Xiao, Y., Liu, H., Wu, L., Warburton, M., Yan, J. (2017). Genome-wide Association Studies in Maize: Praise and Stargaze. Molecular Plant, 10(3), 359–374.

Yu, L. X. (2017). Identification of single-nucleotide polymorphic loci associated with biomass yield under water deficit in alfalfa (Medicago sativa L.) using genome-wide sequencing and association mapping. Frontiers in Plant Science, 8, 1–11.

Yu, L. X., Liu, X., Boge, W., Liu, X. P. (2016). Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Frontiers in Plant Science, 7, 1–12.

Yu, L. X., Zheng, P., Zhang, T., Rodringuez, J., Main, D. (2017). Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Molecular Plant Pathology, 18(2), 187–194.

Zhang, F., Kang, J., Long, R., Yu, L.X., Sun, Y., Wang, Z., Zhao, Z., Zhang, T., Yang, Q. (2020). Construction of high-density genetic linkage map and mapping quantitative trait loci (QTL) for flowering time in autotetraploid alfalfa (Medicago sativa L.) using genotyping by sequencing. Plant Genome, 13(3), 1–11.

Zhang, T., Yu, L. X., Zheng, P., Li, Y., Rivera, M., Main, D., Greene, S. L. (2015). Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa (Medicago sativa L.) using genome-wide association studies with genotyping by sequencing. PLoS ONE, 10(9), 1–17.

Zhu, A., Matoba, N., Wilson, E.P., Tapia, A.L., Li, Y., Ibrahim, J.G., Stein, J.L., Love, M.I. (2021). MRLocus: Identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity. PLoS Genetics, 17, 1–24.

Zhu, C., Yu, J. (2009). Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics, 182, 875–888.

Downloads

Published

2023-05-22

How to Cite

Mnafgui, W., Jabri, C., Sakiroglu, M., Ludidi, N., & Badri, M. (2023). Identification of genetic basis of agronomic traits in alfalfa (Medicago sativa subsp. sativa) using Genome Wide Association Studies. JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT, 5(2), 7–17. https://doi.org/10.56027/JOASD.082023

Plum Analytics

 Artifact Widget

Most read articles by the same author(s)

1 2 > >>