Endophytic microbes modulate plant responses to abiotic stresses: a review

Authors

  • Takwa Marzouk
  • Nutan Kaushik
  • Manel Chaouachi
  • Ayushi Sharma
  • Mounawer Badri
  • Naceur Djébali

DOI:

https://doi.org/10.56027/JOASD.172022

Keywords:

Bioactive compounds, Endophytic microorganisms, Environmental constraints, Plant growth promoting microorganisms, Stress related molecules

Abstract

Many groups of microorganisms have been studied for their benefits towards humankind due to their capacity to produce natural compounds that can be valorized in many economic sectors such as agriculture. Due to the extensive use of chemicals pesticides and fertilizers, current agriculture systems facing several major problems such as emergence of resistant in pathogens and pests, soil infertility and bioaccumulation of toxic residues in the environment and particularly in foods which negatively affects human health. The use of natural products harmless to plants, humans and biodegradable constitute a promising way to overcome these problems. Modern agriculture systems are moving toward the use of beneficial microorganisms isolated from the soil, plant surfaces and inside tissues for developing eco-friendly products such as biofertilizers and biopesticides. Recent literatures show that colonization of plants by endophytes is the rule in nature and endophyte-free plant is a rare exception. Endophytes are microbes living inside plant tissues and supporting them in growth and development, as well as stresses tolerance without causing any apparent disease symptom. Abiotic stresses have a great impact on growth, production and health of plants. Many literatures show the role of endophytes in abiotic stress tolerance as well as mechanisms involved to cope with these constraints via the induction of stress-related genes and molecules. This review provides a summary of literature on how endophytes modulate plant growth and responses to abiotic stresses which may help to better understand their role in plant adaptation to environmental constraints and valorize their use in agriculture.

References

Abadi, V. A. J. M., Sepehri, M. (2016). Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis, 69(1), 9-19. http://dx.doi.org/10.1007%2Fs13199-015-0361-z.

Abdelaziz, M. E., Kim, D., Ali, S., Fedoroff, N. V., Al-Babili, S. (2017). The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Science, 263, 107-115. https://doi.org/10.1016/j.plantsci.2017.07.006.

Acuῆa-Rodrίguez, I. S., Newsham, K.K., Gundel, P.E., Torres-Dıaz, C. and Molina-Montenegro, M.A. (2020). Functional roles of microbial symbionts in plant cold tolerance. Ecology Letters, doi: 10.1111/ele.13502. https://doi.org/10.1111/ele.13502.

Afridi, M. S., Mahmood, T., Salam, A., Mukhtar, T., Mehmood, S., Ali, J., Khatoon Z., Bibi M., Javed M. T., Sultan T., Chaudhary, H. J. (2019). Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry, 139, 569-577. https://doi.org/10.1016/j.plaphy.2019.03.041.

Ahmed, S., Heo, T. Y., Roy Choudhury, A., Walitang, D. I., Choi, J., Sa, T. (2021). Accumulation of compatible solutes in rice (Oryza sativa L.) cultivars by inoculation of endophytic plant growth promoting bacteria to alleviate salt stress. Applied Biological Chemistry, 64 (1), 1-14. https://doi.org/10.1186/s13765-021-00638-x.

Aishwarya, S., Venkateswarulunagam, Netala, V.R., Vijaya, T. (2017). Screening and identification of heavy metal-tolerant endophytic fungi Lasiodiplodia theobromae from Boswellia ovalifoliolata an endemic plant of tirumala hills. Asian Journal of Pharmaceutical and Clinical Research 10(3):488-491.

Alen’kina, S. A., Nikitina, V. E. (2020). Effect of Azospirillum Lectins on the Ascorbate Peroxidase Activity and Ascorbic Acid Content in Wheat Seedling Roots Exposed to Abiotic Stresses. Applied Biochemistry and Microbiology, 56, 211-218. https://doi.org/10.1134/S0003683820020027.

Ali, A. H., Abdelrahman, M., Radwan, U., El-Zayat, S., El-Sayed, M. A. (2018). Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Applied Soil Ecology, 124, 155-162. https://doi.org/10.1016/j.apsoil.2017.11.004.

Ali, A., Bilal, S., Khan, A. L., Mabood, F., Al-Harrasi, A., Lee, I. J. (2019). Endophytic Aureobasidium pullulans BSS6 assisted developments in phytoremediation potentials of Cucumis sativus under Cd and Pb stress. Journal of Plant Interactions, 14(1), 303-313. https://doi.org/10.1080/17429145.2019.1633428.

Ali, S., Charles, T. C., Glick, B. R. (2014). Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry, 80: 160-167. https://doi.org/10.1016/j.plaphy.2014.04.003.

Alikhani, M., Khatabi, B., Sepehri, M., Nekouei, M. K., Mardi, M., Salekdeh, G. H. (2013). A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Molecular BioSystems, 9(6), 1498-1510. https://doi.org/10.1039/C3MB70069K.

Aly, A.H., Debbab, A., Proksch P. (2011). Fungal endophytes: unique plant inhabitants with great promises. Appl. Environ. Microbiol., 90: 1829–1845. https://doi.org/10.1007/s00253-011-3270-y.

Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Nazir, U., Tabassum, T. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104 (3): 267–276. http://dx.doi.org/10.13080/z-a.2017.104.034.

Asaf, S., Hamayun, M., Khan, A. L., Waqas, M., Khan, M. A., Jan, R., ... Hussain, A. (2018). Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiology and Biochemistry, 128, 13-23. https://doi.org/10.1016/j.plaphy.2018.05.007.

Aslam, A., Ahmad Zahir, Z., Asghar, H. N., Shahid, M. (2018). Effect of carbonic anhydrase-containing endophytic bacteria on growth and physiological attributes of wheat under water-deficit conditions. Plant Production Science, 21(3), 244-255. https://doi.org/10.1080/1343943X.2018.1465348.

Aziz, L., Hamayun, M., Rauf, M., Iqbal, A., Arif, M., Husssin, A., Khan, S. A. (2021). Endophytic Aspergillus niger reprograms the physicochemical traits of tomato under cadmium and chromium stress. Environmental and Experimental Botany, 186, 104456. https://doi.org/10.1016/j.envexpbot.2021.104456.

Badawy, A. A., Alotaibi, M. O., Abdelaziz, A. M., Osman, M. S., Khalil, A., Saleh, A. M., Mohammed,A Hashem, A. H. (2021). Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites, 11(7), 428. https://doi.org/10.3390/metabo11070428.

Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., Janeczko A., Kogel K.H., Schäfer P., Schwarczinger I., Zuccaro, A. Skoczowski A. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 180(2), 501-510. https://doi.org/10.1111/j.1469-8137.2008.02583.x.

Beltran-Garcia, MJ., White, Jr. J. F., Prado, F. M., Prieto, K. R., Yamaguchi, L. F., Torres, M. S., Kato, M. J., Medeiros, M. H. G., Di Mascio, P. (2015) Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Sci Rep 4, 6938. https://doi.org/10.1038/srep06938.

Berendsen, R. L., Pieterse, C. M., Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in plant science, 17(8), 478-486. https://doi.org/10.1016/j.tplants.2012.04.001.

Bilal, S., Shahzad, R., Imran, M., Jan, R., Kim, K.M., Lee, I-J. (2020). Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products, 143, 111931. https://doi.org/10.1016/j.indcrop.2019.111931.

Bilal, S., Shahzad, R., Khan, A. L., Kang, S. M., Imran, Q. M., Al-Harrasi, A., Byung-Wook, Y., Lee, I. J. (2018). Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Frontiers in plant science, 9, 1273. https://doi.org/10.3389/fpls.2018.01273.

Bilal, S., Shahzad, R., Khan, A.L., Al-Harrasi, A., Kime, C. K., Lee, I-J. (2019). Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation. Journal of Hazardous Materials, 379, 120824. https://doi.org/10.1016/j.jhazmat.2019.120824.

Bringel, F and Couée, I (2015). Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol. 6:486. https://doi.org/10.3389/fmicb.2015.00486.

Bu, Y., Guo, P., Ji, Y., Zhang, S., Yu, H., Wang, Z. (2019). Effects of Epichloë sinica on Roegneria kamoji seedling physiology under PEG-6000 simulated drought stress. Symbiosis, 77(2), 123-132. https://doi.org/10.1007/s13199-018-0570-3.

Bulgari, D., Casati, P., Crepaldi, P., Daffonchio, D., Quaglino, F., Brusetti, L., Bianco, P.A., 2011. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Appl. Environ. Microbiol. 77, 5018–5022. https://doi.org/10.1128/AEM.00051-11.

Cairns, J. E., Impa, S. M., O’Toole, J. C., Jagadish, S. V. K., Price, A. H. (2011). Influence of the soil physical environment on rice (Oryza sativa L.) response to drought stress and its implications for drought research. Field Crops Research, 121(3), 303-310. https://doi.org/10.1016/j.fcr.2011.01.012.

Campisano, A, Antonielli, L, Pancher, M, Yousaf, S, Pindo, M, Pertot, I. (2014). Bacterial endophytic communities in the grapevine depend on pest management. PLoS ONE, 9: e112763. https://doi.org/10.1371/journal.pone.0112763.

Canny, M. J., Huang, C. X. (1993). What is in the intercellular spaces of roots? Evidence from the cryo-analytical-scanning electron microscope. Physiologia Plantarum, 87(4), 561-568. https://doi.org/10.1111/j.1399-3054.1993.tb02507.x.

Cao, L., Qiu, Z., You, J., Tan, H. (2004). Isolation and characterization of endophytic Streptomyces strains from surface‐sterilized tomato (Lycopersicon esculentum) roots. Letters in Applied Microbiology, 39: 425-430. https://doi.org/10.1111/j.1472-765X.2004.01606.x.

Chelius, M.K., Triplett, E.W. (2001). The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263. https://doi.org/10.1007/s002480000087.

Chen, N., He, R., Chai, Q., Li, C., Nan, Z. (2016). Transcriptomic analyses giving insights into molecular regulation mechanisms involved in cold tolerance by Epichloë endophyte in seed germination of Achnatherum inebrians. Plant growth regulation, 80(3), 367-375. https://doi.org/10.1007/s10725-016-0177-8.

Chen, S., Waghmode, T.R., Sun, R., Kuramae, E.E., Hu, C., Liu, B. (2019a). Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7, 136. https://doi.org/10.1186/s40168-019-0750-2.

Chen, T., Li, C., White, J.F., Nan, Z. (2019b). Effect of the fungal endophyte Epichloë bromicola on polyamines in wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 436:29–48

Chinnaswamy, A., Coba de la Peña, T., Stoll, A., de la Peña Rojo, D., Bravo, J., Rincón, A.,Lucas, M.M, Pueyo, J. J. (2018). A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Annals of Applied Biology, 172(3), 295-308. https://doi.org/10.1111/aab.12420.

Chowdhary, K., and Kaushik, N. (2015). Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS ONE 10(11): e0141444. doi: 10.1371/journal.pone.0141444. https://doi.org/10.1371/journal.pone.0141444.

Christian, N., Herre, E. A., Clay, K. (2019). Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytologist, 222 (3): 1573-1583. https://doi.org/10.1111/nph.15693.

Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clément, C., Barka, E. A. (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology, 71(4), 1685-1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005.

Compant, S., Samad, A, Faist, H., Sessitschn A., (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19: 29-37. https://doi.org/10.1016/j.jare.2019.03.004.

Conrad, R., Erkel, C., Liesack, W. (2006). Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol 2006, 17:262-267. https://doi.org/10.1016/j.copbio.2006.04.002.

Da Silva, L.L., Veloso, T.G.R., Manhães, J.H.C., Da Silva, C. C., De Queiroz, M. V. (2020). The plant organs and rhizosphere determine the common bean mycobiome. Brazilian Journal of Microbiology, https://doi.org/10.1007/s42770-019-00217-9.

Dong, C.J., Wang, L.L., Li, Q., Shang, Q.M. (2019). Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 14(11): e0223847. https://doi.org/10.1371/journal.pone.0223847. .

Dong, L., Cheng, R. , Xiao, L. , Wei, F., Wei, G., Xu, J., Wang, Y., Guo, X., Chen, Z. and Chen, S. (2018). Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng. Chin. Med. 13:41 .https://doi.org/10.1186/s13020-018-0198-5.

Dubey, A., Saiyam, D., Kumar, A., Hashem, A., Abd_Allah, E. F., Khan, M. L. (2021). Bacterial root endophytes: characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) Under drought stress. International Journal of Environmental Research and Public Health, 18(3), 931. https://doi.org/10.3390/ijerph18030931.

Emamverdian, A., Ding, Y., Mokhberdoran, F., and Xie, Y. (2015). Heavy Metal Stress and Some Mechanisms of Plant Defense Response. The Scientific World Journal, 2015, 1-18. https://doi.org/10.1155/2015/756120.

FAO (2010). How to Feed the World in 2050 (http://www.fao.org/fileadmin/templates/wsfs /docs/expert_paper/How_to_Feed_the_World_in_2050.pdf).

Farahat, M. G., Mahmoud, M. K., Youseif, S. H., Saleh, S. A., Kamel, Z. (2020). Alleviation of salinity stress in wheat by ACC deaminase-producing Bacillus aryabhattaie WR29 with multifarious plant growth promoting attributes. Plant Archives, 20(1), 417-429.

Fernandes, E. G., Pereira, O. L., da Silva, C. C., Bento, C. B. P., de Queiroz, M. V. (2015). Diversity of endophytic fungi in Glycine max. Microbiological research, 181, 84-92. https://doi.org/10.1016/j.micres.2015.05.010.

Fleta-Soriano, E., Munné-Bosch, S. (2016). Stress memory and the inevitable effects of drought: a physiological perspective. Frontiers in Plant Science, 7, 143. https://doi.org/10.3389/fpls.2016.00143.

Gagné-Bourque, F., Bertrand, A., Claessens, A., Aliferis, K. A., Jabaji, S. (2016). Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Frontiers in plant science, 7, 584. https://doi.org/10.3389/fpls.2016.00584.

Gagné-Bourque, F., Mayer, B. F., Charron, J. B., Vali, H., Bertrand, A., Jabaji, S. (2015). Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS One, 10(6), e0130456. https://doi.org/10.1371/journal.pone.0130456.

Gaiero, J. R., McCall, C. A., Thompson, K. A., Day, N. J., Best, A. S., Dunfield, K. E. (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. American journal of botany, 100(9), 1738-1750. https://doi.org/10.1371/journal.pone.0130456.

Ghabooli, M. (2014). Effect of Piriformospora indica inoculation on some physiological traits of barley (Hordeum vulgare) under salt stress. Chemistry of natural compounds, 50(6), 1082-1087. https://doi.org/10.1007/s10600-014-1164-9.

Ghabooli, M., Khatabi, B., Ahmadi, F. S., Sepehri, M., Mirzaei, M., Amirkhani, A., Jorrín-Novo, J.V Salekdeh, G. H. (2013). Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. Journal of proteomics, 94, 289-301. https://doi.org/10.1016/j.jprot.2013.09.017.

Ghaffari, M. R., Ghabooli, M., Khatabi, B., Hajirezaei, M. R., Schweizer, P., Salekdeh, G. H. (2016). Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant molecular biology, 90(6), 699-717.

Ghaffari, M. R., Mirzaei, M., Ghabooli, M., Khatabi, B., Wu, Y., Zabet-Moghaddam, M., Mohammadi-Nejad, G., Haynes, P.A., Hajirezaei, M.R., Sepehri, M., Salekdeh, G. H. (2019). Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environmental and experimental botany, 157, 197-210. https://doi.org/10.1016/j.envexpbot.2018.10.002.

González-Teuber, M, Contreras, R.A., Zúñiga, G.E., Barrera, D3, Bascuñán-Godoy, L. (2022). Synergistic Association with Root Endophytic Fungi Improves Morpho-Physiological and Biochemical Responses of Chenopodium quinoa to Salt Stress. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.787318

Gottel, N.R., Castro, H.F., Kerley, M., Yang, Z., Pelletier, D.A., Podar, M., Karpinets, T., Ed Uberbacher, Tuskan, G.A., Vilgalys, R., Doktycz, M.J., and Schadt, C.W. (2011). Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Applied and environmental microbiology, 77 (17): 5934–5944. https://doi.org/10.1128/AEM.05255-11.

Govindasamy, V., George, P., Kumar, M., Aher, L., Raina, S. K., Rane, J., Annapurna K. Minhas, P. S. (2020). Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench. 3 Biotech, 10(1), 13. https://doi.org/10.1007/s13205-019-2001-4.

Graeme, W.N., Schleper, C. (2006). Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends in Microbiology, 14(5): 207-212. https://doi.org/10.1016/j.tim.2006.03.004.

Grobelak, A., Kokot, P., Świątek, J., Jaskulak, M., Rorat, A. (2018). Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals. Journal of Ecological Engineering, 19(5). http://dx.doi.org/10.12911/22998993/89818.

Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J., He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22): 8599-8605. https://doi.org/10.1016/j.biortech.2010.06.085.

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895-914. https://doi.org/10.1139/m97-131.

Halo, B. A., Al-Yahyai, R. A., Al-Sadi, A. M. (2020). An endophytic Talaromyces omanensis enhances reproductive, physiological and anatomical characteristics of drought-stressed tomato. Journal of Plant Physiology, 153163. https://doi.org/10.1016/j.jplph.2020.153163.

Hardoim, P. R., van Overbeek, L. S., van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in microbiology, 16(10), 463-471. https://doi.org/10.1016/j.tim.2008.07.008.

Haruma, T., Yamaji, K., Ogawa, K., Masuya, H., Sekine, Y., Kozai, N. (2019). Root-endophytic Chaetomium cupreum chemically enhances aluminium tolerance in Miscanthus sinensis via increasing the aluminium detoxicants, chlorogenic acid and oosporein. PloS one, 14(2), e0212644. https://doi.org/10.1371/journal.pone.0212644.

He, Y., Yang, Z., Li, M., Jiang, M., Zhan, F., Zu, Y., ... Zhao, Z. (2017). Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress. Environmental Science and Pollution Research, 24(22), 18494-18504. https://doi.org/10.1007/s11356-017-9459-6.

Herrmann, M., Saunders, A.M., Schramm, A. (2008). Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl Environ Microbiol 74:3279 –3283. https://doi.org/10.1128/AEM.02802-07.

Hosseini, F., Mosaddeghi, M. R., Dexter, A. R., Sepehri, M. (2018). Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses. Planta, 247(5), 1229-1245. https://doi.org/10.1007/s00425-018-2861-6.

Huang, W.Y., Cai, Y.Z., Hyde, K.D., Corke, H. and Sun M (2008). Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal diversity, 33:61-75.

Issa, A., Esmaeel, Q., Sanchez, L., Courteaux, B., Guise, J. F., Gibon, Y., ... Barka, E. A. (2018). Impacts of Paraburkholderia phytofirmans strain PsJN on Tomato (Lycopersicon esculentum L.) under high temperature. Frontiers in plant science, 9. https://doi.org/10.3389/fpls.2018.01397.

Jan, R., Khan, M. A., Asaf, S., Lee, I. J., Kim, K. M. (2019). Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza Sativa, via regulating its antioxidant machinery and endogenous hormones. Plants, 8(10), 363. https://doi.org/10.3390/plants8100363.

Janssen, P. H., Kirs, M. (2008). Structure of the Archaeal Community of the Rumen. Applied and Environmental Microbiology, 74(12): 3619–3625. https://doi.org/10.1128/AEM.02812-07.

Jha, Y., Subramanian, R.B. and Patel, S. (2011). Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33, 797–802.

Jiao J., Ma Y., Chen S., Liu C., Song Y., Qin Y., Yuan C., Liu Y. (2016). Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front. Plant Sci., 21. https://doi.org/10.3389/fpls.2016.01387.

Jogawat, A., Vadassery, J., Verma, N., Oelmüller, R., Dua, M., Nevo, E., Johri, A. K. (2016). PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Scientific reports, 6, 36765. https://doi.org/10.1038/srep36765.

Johnston-Monje, D., Raizada, M. N. (2011). Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One, 6(6), e20396. https://doi.org/10.1371/journal.pone.0020396.

Jorge, G. L., Kisiala, A., Morrison, E., Aoki, M., Nogueira, A. P. O., Emery, R. N. (2019). Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris Medik.) by increasing plant cytokinin levels. Environmental and Experimental Botany, 162, 525-540. https://doi.org/10.1016/j.envexpbot.2019.03.028.

Karimi, R., Amini, H., Ghabooli, M. (2022). Root endophytic fungus Piriformospora indica and zinc attenuate cold stress in grapevine by influencing leaf phytochemicals and minerals content. Scientia Horticulturae, 293, 110665. https://doi.org/10.1016/j.scienta.2021.110665.

Kaushal, M., Wani, S.P. (2016). Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems Environment, 231 (1): 68-78. https://doi.org/10.1016/j.agee.2016.06.031.

Kavroulakis, N., Doupis, G., Papadakis, I. E., Ehaliotis, C., Papadopoulou, K. K. (2018). Tolerance of tomato plants to water stress is improved by the root endophyte Fusarium solani FsK. Rhizosphere, 6, 77-85. https://doi.org/10.1016/j.rhisph.2018.04.003.

Khan, A. L., Lee, I. J. (2013). Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC plant biology, 13(1), 86. https://doi.org/10.1186/1471-2229-13-86.

Khan, A. L., Hamayun, M., Kim, Y. H., Kang, S. M., Lee, I. J. (2011). Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiology and Biochemistry, 49(8), 852-861. https://doi.org/10.1016/j.plaphy.2011.03.005.

Khan, A. L., Hamayun, M., Radhakrishnan, R., Waqas, M., Kang, S. M., Kim, Y. H., Shin, J.H., Choo, Y.S., Kim, J.G Lee, I. J. (2012). Mutualistic association of Paecilomyces formosus LHL10 offers thermotolerance to Cucumis sativus. Antonie van Leeuwenhoek, 101(2), 267-279. https://doi.org/10.1007/s10482-011-9630-x.

Khan, A. L., Shin, J. H., Jung, H. Y., Lee, I. J. (2014). Regulations of capsaicin synthesis in Capsicum annuum L. by Penicillium resedanum LK6 during drought conditions. Scientia Horticulturae, 175, 167-173. https://doi.org/10.1016/j.scienta.2014.06.008.

Khan, A. L., Ullah, I., Hussain, J., Kang, S. M., Al‐Harrasi, A., Al‐Rawahi, A., Lee, I. J. (2016). Regulations of essential amino acids and proteomics of bacterial endophytes Sphingomonas sp. L k11 during cadmium uptake. Environmental toxicology, 31(7), 887-896. https://doi.org/10.1002/tox.22100.

Khan, A. L., Waqas, M., Lee, I. J. (2015b). Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. Journal of plant research, 128(2), 259-268. https://doi.org/10.1007/s10265-014-0688-1.

Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Hamayun, M., Lee, I. J. (2015a). Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. Journal of Hazardous Materials, 295, 70-78. https://doi.org/10.1016/j.jhazmat.2015.04.008.

Krell, V., Unger, S., Jakobs-Schoenwandt, D., Patel, A. V. (2018). Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecology, 34, 43-49. https://doi.org/10.1016/j.funeco.2018.04.002.

Kruasuwan, W., Thamchaipenet, A. (2018). 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic diazotrophic Enterobacter sp. EN-21 modulates salt–stress response in sugarcane. Journal of Plant Growth Regulation, 37(3), 849-858. https://doi.org/10.1007/s00344-018-9780-4.

Lanza, M., Haro, R., Conchillo, L. B., Benito, B. (2019). The endophyte Serendipita indica reduces the sodium content of Arabidopsis Plants exposed to salt stress: fungal ENA ATPases are expressed and regulated at high pH and during plant co‐cultivation in salinity. Environmental microbiology, 21(9), 3364-3378. https://doi.org/10.1111/1462-2920.14619.

Larran, S., Monaco, C., Alippi, H.E. (2001). Endophytic fungi in leaves of Lycopersicon esculentum Mill. World J. Microbiol Biotechnol., 17: 181–184. https://doi.org/10.1023/A:1016670000288.

Lee, C., Kim, S., Li, W., Bang, S., Lee, H., Lee, H. J., Noh E-Y., Park J-E., Bang W.Y. Shim, S. H. (2017). Bioactive secondary metabolites produced by an endophytic fungus Gaeumannomyces sp. JS0464 from a maritime halophyte Phragmites communis. The Journal of antibiotics, 70(6), 737-742. https://doi.org/10.1038/ja.2017.39.

Li, D., Bodjrenou, D. M., Zhang, S., Wang, B., Pan, H., Yeh, K. W., Lai, Z Cheng, C. (2021). The Endophytic Fungus Piriformospora indica reprograms Banana to Cold Resistance. International Journal of Molecular Sciences, 22(9), 4973. https://doi.org/10.3390/ijms22094973.

Li, L., Li, L., Wang, X., Zhu, P., Wu, H., Qi, S. (2017). Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiology and Biochemistry, 119, 211-223. https://doi.org/10.1016/j.plaphy.2017.08.029.

Li, T., Liu, M. J., Zhang, X. T., Zhang, H. B., Sha, T., Zhao, Z. W. (2011). Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Science of the total environment, 409(6), 1069-1074. https://doi.org/10.1016/j.scitotenv.2010.12.012.

Li, X., He, X., Hou, L., Ren, Y., Wang, S., Su, F. (2018). Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci Rep 8, 7896. https://doi.org/10.1038/s41598-018-26183-0. https://doi.org/10.1038/s41598-018-26183-0.

Liang, Y., Wei, G., Ning, K., Zhang, G., Liu, Y., Dong, L., Chen, S. (2021). Contents of lobetyolin, syringin, and atractylolide III in Codonopsis pilosula are related to dynamic changes of endophytes under drought stress. Chinese medicine, 16(1), 1-16. https://doi.org/10.1186/s13020-021-00533-z.

Liu, Y., Cao, L., Tan, H., Zhang, R. (2017). Surface display of ACC deaminase on endophytic Enterobacteriaceae strains to increase saline resistance of host rice sprouts by regulating plant ethylene synthesis. Microbial cell factories, 16(1), 1-9. https://doi.org/10.1186/s12934-017-0831-5.

Llorens, E., Sharon, O. Camañes, G., García-Agustín, P., Sharon, A. (2019). Endophytes from wild cereals protect wheat plants from drought by alteration of physiological responses of the plants to water stress. Environmental Microbiology, 21 (9): 3299-3312. https://doi.org/10.1111/1462-2920.14530.

Lobell, D. B., Burke, M.B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., Naylor, R. L. (2008). Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science, 319 (5863): 607-610. https://doi.org/10.1126/science.1152339.

Lugtenberg, B.J.J., Caradus, J.R. and Johnson, L.J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92 (12):1-17. doi: 10.1093/femsec/fiw194. https://doi.org/10.1093/femsec/fiw194.

Ma Y., Rajkumar M., Zhang C., Freitas H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 174: 14-25. https://doi.org/10.1016/j.jenvman.2016.02.047.

Ma, Y., Jiao, J., Fan, X., Sun, H., Zhang, Y., Jiang, J., Liu, C. (2017). Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars. Frontiers in plant science, 7, 2068. https://doi.org/10.3389/fpls.2016.02068.

Ma, Y., Rajkumar, M., Moreno, A., Zhang, C., Freitas, H. (2017). Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere, 185, 75-85. https://doi.org/10.1016/j.chemosphere.2017.06.135.

Masmoudi, F., Tounsi, S., Dunlap, C. A., Trigui, M. (2021). Endophytic halotolerant Bacillus velezensis FMH2 alleviates salt stress on tomato plants by improving plant growth and altering physiological and antioxidant responses. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2021.05.025.

Materatski, P., Varanda, C., Carvalho, T., Bento Dias, A., Doroteia Campos, M., Rei, F., Do Rosario Felix, M. (2019). Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Fungal Biology, 123: 66-76. https://doi.org/10.1016/j.funbio.2018.11.004.

McInroy, J.A. Kloepper, J.W. (1995). Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil, 173, (2): 337–342. https://doi.org/10.1007/BF00011472.

Mehta, P., Sharma, R., Putatunda, C., Walia, A. (2019) Endophytic Fungi: Role in Phosphate Solubilization. In: Singh B. (eds) Advances in Endophytic Fungal Research. Fungal Biology. Springer, Cham

Mei, C., and Flinn, B. S. (2010). The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology, 4(1), 81-95. https://doi.org/10.2174/187220810790069523.

Mesa, J., Mateos-Naranjo, E., Caviedes, M.A., Redondo-Gómez, S., Pajuelo, E. and Rodríguez-Llorente, I.D. (2015). Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front. Microbiol. 6:1450. doi: 10.3389/fmicb.2015.01450. https://doi.org/10.3389/fmicb.2015.01450.

Metoui-Ben Mahmoud, O., Ben Slimene, I., Talbi Zribi, O., Abdelly, C. and Djébali, N. (2017). Response to salt stress is modulated by growth-promoting rhizobacteria inoculation in two contrasting barley cultivars. Acta Physiol. Plant, 39: 120. http://dx.doi.org/10.1007/s11738-017-2421-x.

Metoui-Ben Mahmoud, O., Hidri, R., Talbi-Zribi, O., Taamalli, W., Abdelly, C., Djébali N. (2020). Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. South African Journal of Botany, 128: 209-217. https://doi.org/10.1016/j.sajb.2019.10.023.

Molina-Montenegro, M. A., Acuña-Rodríguez, I. S., Torres-Díaz, C., Gundel, P. E., Dreyer, I. (2020). Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and na+ sequestration. Scientific reports, 10(1), 1-10. https://doi.org/10.1038/s41598-020-62544-4.

Mufti, R., Amna Rafique, M., Haq, F., Munis, M.F.H., Masood, S., Mumtaz, A. S., Chaudhary, H.J. (2015). Genetic diversity and metal resistance assessment of endophytes isolated from Oxalis corniculata. Soil Environ. 34(1): 89-99.

Müller, H., Berg, C., Landa, B.B., Auerbach, A., Moissl-Eichinger, C., Berg, G. (2015). Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138. https://doi.org/10.3389/fmicb.2015.00138.

Muneer, S., Ko, C. H., Wei, H., Chen, Y., Jeong, B. R. (2016). Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress. PLoS One, 11(6), e0157439. https://doi.org/10.1371/journal.pone.0157439.

Murphy, B.R., Doohan, F.M. Hodkinson, T.R. Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis 62, 29–39 (2014). https://doi.org/10.1007/s13199-014-0268-0.

Nagabhyru, P., Dinkins, R. D., Woo,n C. L, Bacon, C. W, and Schard, C. L. (2013). Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol., 13: 127. https://doi.org/10.1186/1471-2229-13-127.

Nkamga, V.D., Henrissat, B., Drancourt, M. (2017). Archaea: Essential inhabitants of the human digestive microbiota. Human Microbiome Journal, 3: 1-8. https://doi.org/10.1016/j.humic.2016.11.005.

Ortiz, J., Soto, J., Fuentes, A., Herrera, H., Meneses, C., Arriagada, C. (2019). The endophytic fungus Chaetomium cupreum regulates expression of genes involved in the tolerance to metals and plant growth promotion in Eucalyptus globulus roots. Microorganisms, 7(11), 490. https://doi.org/10.3390/microorganisms7110490.

Pal, G., Kumar, K., Verma, A., White, J.F., Verma, S.K. (2019). Functional Roles of Seed-Inhabiting Endophytes of Rice. In: Verma S., White, Jr J. (eds) Seed Endophytes. Springer, Cham

Pang, X.M., Zhang, Z.Y., Wen, X.P., Ban, Y., Moriguchi, T. (2007) Polyamines, all-purpose players in response to environment stresses in plants. Plant Stress 1:173–188.

Philippot L., Raaijmakers J.M., Lemanceau P., van der P.W.H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11: 789-799. https://doi.org/10.1038/nrmicro3109.

Photolo, M. M., Sitole, L., Mavumengwana, V., Tlou, M. G. (2021). Genomic and Physiological Investigation of Heavy Metal Resistance from Plant Endophytic Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum. International Journal of Environmental Research and Public Health, 18(3), 997. https://doi.org/10.3390/ijerph18030997.

Pillay, V. K., and Nowak, J. (1997). Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can. J. Microbiol., 43: 354–361. https://doi.org/10.1139/m97-049.

Pinski, A., Betekhtin, A., Hupert-Kocurek, K., Mur, L. A. J., Hasterok, R. (2019). Defining the Genetic Basis of Plant–Endophytic Bacteria Interactions. Int. J. Mol. Sci. 2019, 20, 1947. https://doi.org/10.3390/ijms20081947.

Pitman, M.G., Läuchli, A. (2002) Global Impact of Salinity and Agricultural Ecosystems. In: Läuchli A., Lüttge U. (eds) Salinity: Environment - Plants - Molecules. Springer, Dordrecht. https://doi.org/10.1007/0-306-48155-3_1

Poole, P, Allaway, D. (2000). Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol., 43:117–63. https://doi.org/10.1016/S0065-2911(00)43004-3.

Pump, J, Pratscher, J, Conra,n R. 2015. Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission. Environ Microbiol 17:2254 –2260. https://doi.org/10.1111/1462-2920.12675.

Radhakrishnan, R., Khan, A. L., Lee, I. J. (2013). Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. Journal of Microbiology, 51(6), 850-857.

Radhakrishnan, R., Khan, A. L., Kang, S. M., Lee, I. J. (2015). A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress. Annals of microbiology, 65(1), 585-593. https://doi.org/10.1007/s13213-014-0894-z.

Rai, R., Agrawal, M., Agrawal, S. B. (2016). Impact of heavy metals on physiological processes of plants: with special reference to photosynthetic system. In Plant Responses to Xenobiotics (pp. 127-140). Springer, Singapore.

Ravel, C., Courty, C., Coudret ,A. and Charmet, G. (1997). Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17: 173-181. DOI: 10.1051/agro:19970304

Reza Sabzalian, M., Mirlohi, A. (2010). Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. Journal of plant nutrition and soil science, 173(6), 952-957. https://doi.org/10.1002/jpln.200900345.

Roberts, E.L., Mormile, B., Adamchek, C. (2019). Fitness Attributes of Bacterial and Fungal Seed Endophytes of Tall Fescue. In: Verma S., White, Jr J. (eds) Seed Endophytes. Springer, Cham

Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME journal, 2(4), 404. https://doi.org/10.1038/ismej.2007.106.

Rodriguez, R.J., White, J.J.F., Arnold, A.E., and Redman, R.S. (2009). Fungal endophytes: diversity and functional roles. New Phytol., 182: 314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x.

Rojas-Jimenez, K., Hernandez, M., Blanco, J., Vargas, L. D., Acosta-Vargas, L. G., Tamayo, G. (2016). Richness of cultivable endophytic fungi along an altitudinal gradient in wet forests of Costa Rica. Fungal ecology, 20, 124-131. https://doi.org/10.1016/j.funeco.2015.12.006.

Romero, F.M., Marina, M., Pieckenstain, F.L., 2014. The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol. Lett. 351, 187–194. https://doi.org/10.1111/1574-6968.12377.

Rosenblueth, M., Martínez-Romero, E., 2006. Bacterial endophytes and their interactions with hosts. Molecular Plant Microbe Interaction, 19: 827–837. https://doi.org/10.1094/MPMI-19-0827.

Sadeghi, F., Samsampour, D., Seyahooei, M. A., Bagheri, A., Soltani, J. (2020). Fungal endophytes alleviate drought-induced oxidative stress in mandarin (Citrus reticulata L.): Toward regulating the ascorbate–glutathione cycle. Scientia Horticulturae, 261, 108991. https://doi.org/10.1016/j.scienta.2019.108991.

Sampangi-Ramaiah, M.H. , Dey, P. , Jambagi, S. , Kumari, M.V. , Oelmüller, R. , Nataraja, K.N. , Shaanker, R.U. (2020). An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Scientific reports, 10(1), 1-14. https://doi.org/10.1038/s41598-020-59998-x.

Sandhya, S., Radhakrishnan, R., Sathasivam, R., Arun, M., Packiaraj, G., Park, S. U. (2021). Influence of Endophytic Bacterium, Cellulosimicrobium sp. FRR2 on Plant Growth of Amaranthus campestris L. and Bacterial Survival at Adverse Environmental Conditions. J Pure Appl Microbiol.

Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., Sundaresan, V. (2017). Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio 8:e00764-17. https://doi .org/10.1128/mBio.00764-17. https://doi.org/10.1128/mBio.00764-17.

Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M.C, Glick, B.R. (2016) Plant growth-promoting bacterial endophytes. Microbiological Research 183: 92–99. https://doi.org/10.1016/j.micres.2015.11.008.

Schardl, C.L., Leuchtmann, A., and Spiering, M.J. (2004). Symbioses of grasses with seed-borne fungal endophytes. Ann. Rev. Plant Biol., 55: 315–340.

Schulz, B., Boyle, C. (2005). The endophytic continuum. Mycol Res., 109 (6):661-86.

Schulz, B., Boyle, C. (2006) What are Endophytes?. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (eds) Microbial Root Endophytes. Soil Biology, vol 9. Springer, Berlin, Heidelberg

Sepehri, M., Ghaffari, M. R., Khayam Nekoui, M., Sarhadi, E., Moghadam, A., Khatabi, B., Hosseini Salekdeh, G. (2021). Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. Journal of Applied Microbiology. https://doi.org/10.1111/jam.15063.

Sheetal, K. R., Singh, S. D., Anand, A., Prasad, S. (2016). Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Indian Journal of Plant Physiology, 21(2): 219-223. https://doi.org/10.1007/s40502-016-0221-8.

Sheibani-Tezerji, R., Rattei, T., Sessitsch, A., Trognitz, F., Mitter, B. (2015). Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. MBio, 6(5). https://doi.org/10.1128/mBio.00621-15.

Shen, M., Zhao, D. K., Qiao, Q., Liu, L., Wang, J. L., Cao, G. H., Li, T Zhao, Z. W. (2015). Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metals stress. PloS one, 10(4), e0123418. https://doi.org/10.1371/journal.pone.0123418.

Sherameti, I., Venus, Y., Drzewiecki, C., Tripathi, S., Dan, V. M., Nitz, I., Varma, A., M. Grundler, F Oelmüller, R. (2008). PYK10, a β‐glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. The Plant Journal, 54(3), 428-439. https://doi.org/10.1111/j.1365-313X.2008.03424.x.

Shi, Y., Yang, H., Zhang, T., Sun, J., Lou, K., 2014. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl. Microbiol. Biotechnol. 98, 6375–6385. https://doi.org/10.1007/s00253-014-5720-9.

Shrivastava, P., Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22(2): 123–131. doi: 10.1016/j.sjbs.2014.12.001. https://doi.org/10.1016/j.sjbs.2014.12.001.

Singh, S., Singh, U. B., Trivedi, M., Sahu, P. K., Paul, S., Paul, D., Saxena, A. K. (2020). Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil. International Journal of Environmental Research and Public Health, 17(1), 253. https://doi.org/10.3390/ijerph17010253.

Song, M., Chai, Q., Li, X., Yao, X., Li, C., Christensen, M. J., Nan, Z. (2015). An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant and soil, 387(1-2), 153-165. https://doi.org/10.1007/s11104-014-2289-0.

Sood, G., Kaushal, R., Sharma, M. (2020). Alleviation of drought stress in maize (Zea mays L.) by using endogenous endophyte Bacillus subtilis in North West Himalayas. Acta Agriculturae Scandinavica, Section B—Soil Plant Science, 1-10. https://doi.org/10.1080/09064710.2020.1743749.

Stone, J.K., Polishook, J.D., White, J.RJ... 2004. Endophytic fungi. In: Mueller G,Bills GF, Foster MS, eds. Biodiversity of fungi: inventory and monitoring methods. Burlington, MA, USA: Elsevier, 241–270.

Stritzler, M., Tissera, A. D., Soto, G., Ayub, N. (2018). Plant growth-promoting bacterium Pseudomonas fluorescens FR1 secrets a novel type of extracellular polyhydroxybutyrate polymerase involved in abiotic stress response in plants. Biotechnology letters, 40(9-10), 1419-1423. https://doi.org/10.1007/s10529-018-2576-6.

Su, C., Zhang, F., Sun, K., Zhang, W. Dai, C.C. (2019). Fungal endophyte Phomopsis liquidambari improves iron and molybdenum nutrition uptake of Peanut in consecutive monoculture soil. J Soil Sci Plant Nutr, 19: 71–80. https://doi.org/10.1007/s42729-019-0011-2.

Su, Z., Zeng, Y., Li, X., Perumal, A. B., Zhu, J., Lu, X., Dai, M., LiuX.H Lin, F. (2021). The Endophytic Fungus Piriformospora Indica-Assisted Alleviation of Cadmium in Tobacco. Journal of Fungi, 7(8), 675. https://doi.org/10.3390/jof7080675.

Sun, L., Lei, P., Wang, Q., Ma, J., Zhan, Y., Jiang, K., Xu, Z Xu, H. (2020). The Endophyte Pantoea alhagi NX-11 Alleviates Salt Stress Damage to Rice Seedlings by Secreting Exopolysaccharides. Frontiers in microbiology, 10, 3112. https://doi.org/10.3389/fmicb.2019.03112.

Suryanarayanan, T. S., Thennarasan, S. (2004). Temporal variation in endophyte assemblages of Plumeria rubra leaves. Fungal Diversity, 15, 197-204.

Suryanarayanan, T.S., Kumaresan, V., Johnson, J.A. (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Canadian Journal of Microbiology, 44 (10): 1003-1006. https://doi.org/10.1139/w98-087.

Szymańska, S., Dąbrowska, G. B., Tyburski, J., Niedojadło, K., Piernik, A., Hrynkiewicz, K. (2019). Boosting the Brassica napus L.tolerance to salinity by the halotolerant strain Pseudomonas stutzeri ISE12. Environmental and Experimental Botany, 163, 55-68. https://doi.org/10.1016/j.envexpbot.2019.04.007.

Taffner, J., Erlacher, A., Bragina, A., Berg, C., Moissl-Eichinger, C., Berg, G. (2018). What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. mSphere 3:e00122-18. https://doi.org/10.1128/mSphere .00122-18.

Turner, T. R., James, E. K. and Poole, P.S. (2013). The plant microbiome. Genome Biology, 14:209. http://genomebiology.com/2013/14/6/209.

Unterseher, M. (2011) Diversity of Fungal Endophytes in Temperate Forest Trees. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 80. Springer, Dordrecht

Verma, S. C., Singh, A., Chowdhury, S. P., Tripathi, A. K. (2004). Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnology letters, 26(5), 425-429. https://doi.org/10.1023/B:BILE.0000018263.94440.ab.

Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828. https://doi.org/10.1038/nrmicro2910.

Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., Wettstein, D.VFranken, P Kogel, K.H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102(38), 13386-13391. https://doi.org/10.1073/pnas.0504423102 .

Wang, E.T. (2019). Symbiosis between Rhizobia and legumes. In: Ecology and Evolution of Rhizobia. Springer, Singapore. https://doi.org/10.1007/978-981-32-9555-1_1.

Wang, J., Hou, W., Christensen, M. J., Xia, C., Chen, T., Zhang, Z., Nan, Z. (2020). The fungal endophyte Epichloë gansuensis increases NaCl-tolerance in Achnatherum inebrians through enhancing the activity of plasma membrane H+-ATPase and glucose-6-phosphate dehydrogenase. Sci. China Life Sci. (2020). https://doi.org/10.1007/s11427-020-1674-y.

Wang, J., Nan, Z., Christensen, M. J., Li, C. (2018). Glucose-6-phosphate dehydrogenase plays a vital role in Achnatherum inebrians plants host to Epichloë gansuensis by improving growth under nitrogen deficiency. Plant and soil, 430(1-2), 37-48. https://doi.org/10.1007/s11104-018-3710-x.

Wang, T. T., Ding, P., Chen, P., Xing, K., Bai, J. L., Wan, W., Qin, S. (2017). Complete genome sequence of endophyte Bacillus flexus KLBMP 4941 reveals its plant growth promotion mechanism and genetic basis for salt tolerance. Journal of biotechnology, 260, 38-41. https://doi.org/10.1016/j.jbiotec.2017.09.001.

Wang, Z., Solanki, M. K., Yu, Z. X., Yang, L. T., An, Q. L., Dong, D. F., Li, Y. R. (2019). Draft Genome Analysis Offers Insights Into the Mechanism by Which Streptomyces chartreusis WZS021 Increases Drought Tolerance in Sugarcane. Frontiers in microbiology, 9, 3262. https://doi.org/10.3389/fmicb.2018.03262.

Waqas, M., Khan, A. L., Kang, S. M., Kim, Y. H., Lee, I. J. (2014). Phytohormones-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biology and fertility of Soils, 50(7), 1155-1167. https://doi.org/10.1007/s00374-014-0937-4.

White, J.F., Reddy, P.V., Bacon, C.W. (2000). Biotrophic endophytes of grasses: a systematic appraisal. In: Bacon CW, White JF Jr, eds. Microbial Endophytes. New York: Marcel Dekker, pp 49–62.

Win, K. T., Tanaka, F., Okazaki, K., Ohwaki, Y. (2018). The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry, 127, 599-607. https://doi.org/10.1016/j.plaphy.2018.04.038.

Wrage, N., Velthof, G.L., Van Beusichem, M.L. Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem, 33:1723-1732. https://doi.org/10.1016/S0038-0717(01)00096-7.

Yaish, M. W., Antony, I., Glick, B. R. (2015). Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek, 107(6), 1519-1532. https://doi.org/10.1007/s10482-015-0445-z.

Yamaji, K., Watanabe, Y., Masuya, H., Shigeto, A., Yui, H., Haruma, T. (2016). Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration. PloS one, 11(12), e0169089. https://doi.org/10.1371/journal.pone.0169089.

Yandigeri, M. S., Meena, K. K., Singh, D., Malviya, N., Singh, D. P., Solanki, M. K., Yadav, A.K Arora, D. K. (2012). Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regulation, 68(3), 411-420. https://doi.org/10.1007/s10725-012-9730-2.

Yasmeen, R., Siddiqui, Z. S. (2018). Ameliorative effects of Trichoderma harzianum on monocot crops under hydroponic saline environment. Acta physiologiae plantarum, 40(1), 4. https://doi.org/10.1007/s11738-017-2579-2.

Yihui, B. A. N., Zhouying, X. U., Yurong, Y. A. N. G., ZHANG, H., Hui, C. H. E. N., Ming, T. A. N. G. (2017). Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere, 27(2), 283-292. https://doi.org/10.1016/S1002-0160(17)60316-3.

Zahoor, M., Irshad, M., Rahman, H., Qasim, M., Afridi, S. G., Qadir, M., Hussain, A. (2017). Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicology and environmental safety, 142, 139-149. https://doi.org/10.1016/j.ecoenv.2017.04.005.

Zhang, J., Wang, P., Tian, H., Tao, Z., Guo, T. (2020). Transcriptome Analysis of Ice Plant Growth-Promoting Endophytic Bacterium Halomonas sp. Strain MC1 to Identify the Genes Involved in Salt Tolerance. Microorganisms, 8(1), 88. https://doi.org/10.3390/microorganisms8010088.

Zhang, X. X., Li, C. J., Nan, Z. B. (2011). Effects of salt and drought stress on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Biochemical Systematic and Ecology, 39(4-6), 471-476. https://doi.org/10.1016/j.bse.2011.06.016.

Zhou, J., Li, P., Meng, D., Gu, Y., Zheng, Z., Yin, H., Zhou, Q Li, J. (2020). Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environmental Pollution, 260, 113990. https://doi.org/10.1016/j.envpol.2020.113990.

Zhou, L., Li, C., Zhang, X., Johnson, R., Bao, G., Yao, X., Chai, Q. (2015). Effects of cold shocked Epichloë infected Festuca sinensis on ergot alkaloid accumulation. Fungal Ecology, 14, 99-104. https://doi.org/10.1016/j.funeco.2014.12.006.

Zhou, R., Yu, X., Ottosen, C. O., Rosenqvist, E., Zhao, L., Wang, Y., Yu, W., Zhao, T Wu, Z. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC plant biology, 17(1), 24. https://doi.org/10.1186/s12870-017-0974-x.

Zribi, K., Djébali, N., Mrabet, M., Khayat, N., Smaoui, A., Mlayah, A. and Aouani, M. E. (2012). Physiological responses to cadmium, copper, lead, and zinc of Sinorhizobium sp. strains nodulating Medicago sativa grown in Tunisian mining soils. Ann. Microbiol., 62: 1181-1188. https://doi.org/10.1007/s13213-011-0358-7.

Źróbek-Sokolnik, A. (2012) Temperature Stress and Responses of Plants. In: Ahmad P., Prasad M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY.

Downloads

Published

2022-09-30

How to Cite

Marzouk, T., Kaushik, N., Chaouachi, M., Sharma, A., Badri, M., & Djébali, N. (2022). Endophytic microbes modulate plant responses to abiotic stresses: a review. JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT, 4(3), 62–85. https://doi.org/10.56027/JOASD.172022

Issue

Section

Articles

Plum Analytics

 Artifact Widget

Most read articles by the same author(s)

1 2 > >>