Influence of drought and heat stresses in fodder legumes productivity and nutritive value


  • Nour Ressaissi
  • Maria Teresa Sanchez-Ballesta
  • Mounawer Badri



Fodder legumes, drought, heat stress, productivity, nutritive value


Plants are often subjected to several environmental constraints in the field, often simultaneously, which significantly affect their productivity. Among these constraints, water deficit and heat stress are the main constraints limiting plant yield in the arid regions of the Mediterranean basin. Both of these abiotic factors are exacerbated by climate change. Fodder legumes provide a rich resource of plant nutrition to human diets, and are vital for food security and sustainable cropping. Numerous biochemical, molecular, and physiological responses are evoked by drought and heat stresses, influencing the fodder crop yield and nutritional value. When plants are water stressed, they are unable to maintain good growth and produce high yields. Drought also reduces the protein content of the plants, which can lead to a decrease in forage quality. Heat can negatively affect the productivity of forage legumes. High temperatures can cause heat stress which can lead to decreased photosynthesis and reduced productivity. In addition, high temperatures can result in decreased forage quality and increased nutrient losses. Exposure to combined water stress and heat can reduce the protein, fiber and mineral content of forage legumes and can also reduce their digestibility. This review summarizes the current status of the effects of drought and heat stresses on forage crops productivity and fodder quality.


Abdelrahman, M., Burritt, D.J., Tran, L. P. (2017). The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses. Seminars in Cell & Developmental Biology pii, S1084-9521, 30394– 30399.

Ahmed, F.P., Gaur, P.M., Croser, J. Chickpea (Cicer arietinum). (2005) In Genetic Resources, Chromosome Engineering, and Crop Improvement-Grains Legumes. CRC Press pp. 185–214.

Allakhverdiev, S. I., Kreslavski, V. D., Klimov, V. V., Los, D. A., Carpentier, R., Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research 98, 541–550.

Anjum, M.F., Zankari, E., Hasman, H. (2017). Molecular methods for detection of antimicrobial resistance. Microbiology Spectrum 5(6),1-17.

Armenta-Medina, A., Gillmor, C.S., Gao, P., Mora-Macias, J., Kochian, L. V., Xiang, D., & Datla, R. (2021). Developmental and genomic architecture of plant embryogenesis: from model plant to crops. Plant Communications 2, 100136.

Arya H., Singh, M.B., Bhalla P.L. (2021) Towards Developing Drought-smart Soy beans. Front Plant Science 12,21-23.

Asekova, S., Kulkarni, K. P., Kim, M., Kim, J.-H., Song, J. T., Shannon, J. G., (2016). Novel quantitative trait loci for forage quality traits in a cross between PI 483463 and ‘Hutcheson’ in soybean. Crop Science 56, 2600–2611.

Awasthi., Pandey M.K., Khan Bundela A.K., Wong PS, Selvam J.W. (2012). Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresource. Technology 168, 214-221

Badri, M., Bouhaouel, I., Arraouadi, S., Taamalli, W., Huguet, T., Aouani, M.E. (2016). Variation in tolerance to drought among Tunisian populations of Medicago truncatula. Plant Genetic Resources 14(1), 41.

Bansal, R., Mian, M.A.R., Mittapalli, O., Michel, A.P. (2013). Molecular characterization and expression analysis of soluble trehalase gene in Aphis glycines, a migratory pest of soybean. Bulletin of Entomological Research, 103(03), 286–295.

Baumgard, L.H., Rhoads, R.P. (2013). Effects of heat stress on postabsorptive metabolism and energetics. Annual Review of Animal Biosciences, 1(1), 311–337.

Bita, C. E., Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4,273.

Blount, J.D., Vitikainen, E.I.K., Stott, I., Cant, M.A. (2016). Oxidative shielding and the cost of reproduction. Biological Reviews 91, 483–497.

Capstaff, N.M., Miller, A.J. (2018). Improving the Yield and Nutritional Quality of Forage Crops. Frontier Plant Science 9,535.

Carlsson, G., Huss-Danell, K., (2003). Nitrogen fixation in perennial forage legumes in the field. Plant and Soil 253, 353-372.

Chaves, M. M., Flexas, J., Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103, 551–560.

Chakraborty, K., Singh, A.L., Bhaduri, D., Sairam, R.K. (2013). Mechanism of Salinity Stress Tolerance in crop Plants and Recent Developments, Advances in Plant Physiology 14, 466-496

Chen, J., Young, S. M., Allen, C., Seeber, A., Péli-Gulli, M.-P., Panchaud, N., Sklar, L.A. (2012). Identification of a Small Molecule Yeast TORC1 Inhibitor with a Multiplex Screen Based on Flow Cytometry. ACS Chemical Biology 7, 715–722.

Craine, J. M., Elmore, A. J., Olson, K. C., Tolleson, D. (2010). Climate change and cattle nutritional stress. Global Change Biology 16, 2901–2911.

Das, D., Eldakak, M., Paudel, B., Kim, D.W, Hemmati, H., Basu, C., Rohila, J.S. (2016). Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. BioMed Research International 8, 1-23.

De Moraes, M.T., Gusmão, A.G. (2021). How do water, compaction and heat stresses affect soybean root elongation? A review. Rhizosphere, 1,100403.

Dornbos, D.L., Mullen, R.E. (1992). Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. The Journal of the American Oil Chemists' Society 69, 228–231.

Dreesen, F. E., De Boeck, H. J., Janssens, I. A., Nijs, I. (2012). Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environmental and Experimental Botany 79, 21–30.

Farooq, M., Wahid, A., Kobayashi, N. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture. Springer, Dordrecht, pp 153–188

Jha, S. K., Mishra, S., Sinha, B., Alatalo, J. M., Pandey, R. (2017). Rural development program in tribal region: A protocol for adaptation and addressing climate change vulnerability. Journal of Rural Studies 51, 151–157.

Jianing,G., Yuhong,G., Yijun,G., Rasheed,A., Qian,Z., Zhiming,X., Mahmood,A., Shuheng, Z., Zhuo,Z., Xiaoxu,W., Jian,W.(2022). Improvement of heat stress tolerance in soybean (Glycine max L), by using conventional and molecular tools. Frontiers Plant Science 13,993189.

Jogawat, A., Yadav, B., Chhaya, Lakra, N., Singh, A. K., Narayan, O.P. (2021). Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. Physiologia Plantarum 172, 1106–1132.

Jorge, J.G, Villalobos-López, M.A, Chavarría-Alvarado, K.L., Ríos-Meléndez, S., López-Meyer M., Arroyo-Becerra, A. (2020). Genome-wide transcriptional changes triggered by water defcit on a drought-tolerant common bean cultivar. BMC Plant Biol 20, 1–20.

Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., Sharma, A. (2020). The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Applied Science 10, 5692.

Kaushal, N., Gupta, K., Bhandhari, K., Kumar, S., Thakur, P., Nayyar, H. (2011). Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiology and Molecular Biology of Plants 17: 892, 203-213.

Haddoudi, L., Hdira, S., Hanana, M., Romero, I., Haddoudi, I., Mahjoub, A., Ben Jouira, H., Djébali, N., Ludidi, N., Sanchez-Ballesta, M.T., Abdelly, C., Badri, M. (2021). Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress. Plants 10, 2114.

Hatfield, J. L., Dold, C. (2019). Water-Use Efficiency: Advances and Challenges in a Changing Climate. Frontiers in Plant Science 10, 103.

Hopkins, A., Del Prado, A. (2007). Implications of climate change for grassland in Europe: impacts, adaptations and mitigation options: a review. Grass and Forage Science 62, 118–126.

Kebede, T., Haile, A., Dadi, H. (2011). Smallholder goat breeding and flock management practices in the central rift valley of Ethiopia. Tropical Animal Health and Production 44, 999–1006.

Khanal, A. R., Mishra, A. K. (2017). Enhancing food security: Food crop portfolio choice in response to climatic risk in India. Global Food Security 12, 22–30.

Küchenmeistera, K., Küchenmeistera F., Kaysera, M., Wrage-Mönnigb, N., Isselstein, J. (2013), Influence of drought stress on nutritive value of perennial forage legumes, International Journal of Plant Production 7, 693-710.

Kumar, S., Thakur, P., Kaushal, N., Malik, J.A, Gaur, P., Nayyar, H. (2013). Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Archives of Agronomy and Soil Science 59, 823-843.

Lipiec J., Doussan, C., Nosalewicz, K., Kondracka. (2013). Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics, 27, 463-477.

Liu, Y., Song, M., Almeida, F. N., Tilton, S. L., Cecava, M. J., Stein, H. H. (2014). Energy concentration and amino acid digestibility in corn and corn coproducts from the wet-milling industry fed to growing pigs. Journal of Animal Science 92, 4557-4565.

Lobell, D. B., Gourdji, S. M. (2012). The Influence of Climate Change on Global Crop Productivity. Plant Physiology 160, 1686–1697.

Lucas, M. R., Ehlers, J. D., Huynh, B.L., Diop, N.N., Roberts, P. A., Close, T. J. (2012). Markers for breeding heat-tolerant cowpea. Molecular Breeding 31, 529–536.

Luo, L., Xia, H., Lu, B.R., (2019). Editorial: Crop breeding for drought resistance. Frontiers Plant Science, 10:314.

McCord, P. F., Cox, M., Schmitt-Harsh, M., Evans, T. (2015). Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy 42, 738–750.

Nelimor., Badu-Apraku., Tetteh., N’guetta. (2019). Assessment of Genetic Diversity for Drought, Heat and Combined Drought and Heat Stress Tolerance in Early Maturing Maize Landraces. Plants 8, 518.

Nielsen, P. M., Petersen, D., Dambmann, C. (2001). Improved Method for Determining Food Protein Degree of Hydrolysis. Journal of Food Science 66, 642–646.

Nijabat, A., Bolton, A., Mahmood-ur-Rehman, M., Shah, A. I., Hussain, R., Naveed, N. H., Simon, P. (2020). Cell Membrane Stability and Relative Cell Injury in Response to Heat Stress during Early and Late Seedling Stages of Diverse Carrot (Daucus carota L.) Germplasm 55, 1446–1452.

Nunes, E., Candreva, E., Bracesco, N., Sánchez, A., & Dell, M. (2008). HDF1 and RAD17 Genes Are Involved in DNA Double-strand Break Repair in Stationary Phase Saccharomyces cerevisiae. Journal of Biological Physics 34, 63–71.

Ohama, N., Kusakabe, K., Mizoi, J., Zhao, H., Kidokoro, S., Koizum, S., Yamaguchi-Shinozaki, K. (2016) The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the expression levels of transcription factors. Plant Cell 28, 181-201.

Patil, PP., Patil, SS., Patel, DU. (2017). Genetic diversity in sugarcane (Saccharum spp. Complex). Journal of Pharmacognosy and Phytochemistry 6, 570-573.

Prasad, T.V., Nandagopal, V., Gedia, M.V. (2008). Effect of abiotic factors on the population dynamics of Aphis craccivora koch in groundnut in Saurashtra region of Gujarat. Indian Journal of Entology 70, 309-313.

Prasch, C. M., Sonnewald, U. (2015). Signaling events in plants: Stress factors in combination change the picture. Environmental and Experimental Botany 114, 4–14.

Rashmi, S., Rajkumar, H. G. (2014). Preliminary phytochemical screening of differentsolvent extracts of lichens from Kodagu district, Karnataka. Journal of Pharmacognosy and Phytochemistry 3, 209-212.

Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., Von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany 64, 3201–3212.

Ruiz-Vera, U. M., Siebers, M., Gray, S. B., Drag, D. W., Rosenthal, D. M., Kimball, B. A., Bernacchi, C. J. (2013). Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the midwestern United States. Plant Physiology 162, 410–423.

Salvagiotti F., Cassman, K.G., Specht, J. E., Walters, . D. T., Weiss, A., Dobermann,A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research 108, 1-13.

Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K.H.M., Nayyar, H. (2017). Effects of drought, heat and their interaction of the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science 8,1776.

Singh, B.B., Ajeigbe, H.A., Tarawali, S.A., Fernandez-Rivera, S., Abubakar, M., (2003). Improving the production and utilization of cowpea as food and fodder. Field Crops Research 84, 169-177.

, 169-177

Sita, K., Sehgal, A., Hanumantha-Rao, B., Nair R.M., Vara Prasad, P.V., Kumar, S., Gaur, P.M., Farooq, M., Siddique, K.H.M., Varshney, R.K., and Nayyar, H. (2017). Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. Frontiers Plant Science 8,1658.

Smith, J. R., Mengistu, A., Nelson, R. L., and Paris, R. L. (2008). Identification of soybean accessions with high germinability in high-temperature environments. Crop Science 48, 2279–2288.

Tadross, M. A., Gutowski, W. J. J., Hewitson, B. C Jack, C. J., New, M. (2006). MM5 simulations of interannual change and the diurnal cycle of southern African regional climate. Theoretical and Applied Climatology 86: 63-80.

Tardieu, F., Parent, B., Caldeira, C.F., Welcker, C. (2014). Genetic and physiological controls of growth under water deficit, Plant Physiology 164, 1628–1635.

Ullah, M., Nasir, A., Saba, D., Muhammad, A.S., Abdul, H., Hafeez, A., Muhammad, I., Muhammad, R., Fayyaz, A.R., Abdul, W. (2018) Effect of Different Nitrogen Levels on Growth, Yield and Yield Contributing Attributes of Wheat. International Journal of Scientific and Engineering Research 9, 595-602.

Vance, C.P., Graham, P.H., Allan, D.L. (2000). Biological Nitrogen Fixation: Phosphorus – A Critical Future Need, in: Pedrosa, F.O., Hungria, M., Yates, G., Newton, W.E. (Eds.), Nitrogen Fixation: From Molecules to Crop Productivity, Current Plant Science and Biotechnology in Agriculture. Springer Netherlands, pp. 509–514.

Verma, P., Sharma, T.R., Srivastava, P.S., Abdin, M.Z., Bhatia, S. (2014). Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers. Molecular Biology Reports 41, 5607–5625.

Wheeler, T., von Braun, J. (2013). Climate Change Impacts on Global Food Security. Science, 341, 508-513.

Xu, C., He, C.G., Wang, Y.G., Bi, Y.F., Jiang, H. (2020). Effect of drought and heat stresses on photosynthesis, pigments, and xanthophyll cycle in alfalfa (Medicago sativa L.) Photosynthetica 58, 1226-1236.

Yadav, S., Jha, R. (2021). Macadamia nut cake as an alternative feedstuff for broilers: effect on growth performance. Animal Feed Science Technology 275(7):114873.

Ye, H., Roorkiwal M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R.K. (2018). Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany 69, 3267–77

Yousfi, N., Slama, I., Ghnaya, T., Savouré, A., Abdelly, C. (2010). Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. Comptes Rendus Biologies 333, 205–213.

Zandalinas, S. I., Sales, C., Beltrán, J., Gómez-Cadenas, A., Arbona, V. (2017). Activation of Secondary Metabolism in Citrus Plants Is Associated to Sensitivity to Combined Drought and High Temperatures. Frontiers in Plant Science 7,1954.

Zhang, L., Zhao, H.K., Dong, Q.L., Zhang, Y.Y., Wang, Y.M., Li, H.Y., Xing, G.J., Li, Q.Y., Dong, Y.S. (2015). Genome-wide analysis and expression profiling under heat and drought, treatments of HSP70 gene family in soybean (Glycine max L.). Frontiers Plant Science 6, 1172 773.

FAOSTAT, (2018). Food and Agriculture Organization of the United Nations. Retrieved from:

IPCC 2022, A report about Synergies and Trade-Offs between Adaptation and Mitigation, from:

The National Research Council (NRC):

UN 2022 A report about the growing population from:

WHO, 2020. A report about Drought. Retrieved from: topics/drought#tab=tab_1.




How to Cite

Ressaissi, N., Sanchez-Ballesta, M. T., & Badri, M. (2023). Influence of drought and heat stresses in fodder legumes productivity and nutritive value. JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT, 5(2), 18–26.

Plum Analytics

 Artifact Widget

Most read articles by the same author(s)