Reduced nitrogen and phosphorus fertilization combined with mycorrhizal inoculation enhance potato yield and soil mineral fertility

Authors

  • Souad Ettlili
  • Sonia Labidi
  • Bilel Khiari
  • Maroua Jerbi
  • Amani Ben Alaya
  • Naceur Djébali

DOI:

https://doi.org/10.56027/JOASD.212022

Keywords:

mycorrhizas, chemicals fertilizers, potato yield, soil quality

Abstract

To improve sustainable agriculture it becomes crucial to minimize the use of chemical inputs and involve new practices that are more productive and healthier for humans and environment. Biofertilization with arbuscular mycorrhizal fungi (AMF), known for increasing the productivity of many crops including potatoes, could be considered as one of these sustainable practices. The purpose of this study was to determine whether mycorrhizal inoculation can minimize chemical fertilization for potato (Solanum tuberosum L.), one of the most demanding species in mineral elements. Thus, by studying the effect of chemical fertilization and mycorrhizal inoculant on potato yield and soil quality. Two doses of chemical fertilizer (NP) corresponding to 50 % and 100 % of the recommended dose has been applied in the presence or not of the mycorrhizal inoculant. The results have shown that adding arbuscular mycorrhizal fungi in combination with 50 % of the chemical fertilizer dose gives the best effects. A significant increase in yield, root colonization, and P soil content has been observed (P < 0.001). Thus mycorrhizal inoculation could reduce the application of synthetic fertilizers and thus improve yield while preserving the environment.

References

Abdel-Latef, A., Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127, 228-233.

Adavi, Z., Tadayoun, M. R. (2014). Effect of Mycorrhiza Application on Plant Growth and Yield in Potato Production Under Field Condition Iranian Journal of Plant Physiology 4(3) 1087-93.

Adesemoye, O., Kloepper, J. (2009). Plant-microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85: 1-12.

Al-Karaki, G. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulture 109, 1-7.

Aysan, E., Demir, S., 2009. Using arbuscular mycorrhizal fungi and Rhizobium leguminosarum Biovar against Sclerotinia sclerotiorum (Lib.) de Bary in the common bean (Phaseolus vulgaris). Plant Pathol. J. 8, 74–78.

Behera, B., Singdevsachan, S., Mishra, R., Dutta, S., Thatoi, H. (2014). Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove-a review. Biocatal. Agric. Biotechnol. 3, 97-110.

Boutaj, H., Meddich, A., Roche, J., Mouzeyar, S., El-Modafar, C. (2022). The effects of mycorrhizal fungi on vascular wilt diseases. Crop Protection 155, 1-15. Chapman, H. (1965). Cation-exchange capacity. In: Black, C.A. (Ed.), Methods of Soil Analysis, Part 2. American Society of Agronomy, Madison, WI, USA.

Chliyeh, M., Ouazzani Chahdi, A., Selmaoui, K., Ouazzani Touhami, A., Filali Maltouf, A., El Modafar, C., Moukhli, A., Oukabli, A., Benkirane, R., Douira, A. (2014). Effect of Trichoderma harzianum and Arbuscular Mycorrhizal fungi against verticillium wilt of tomato. International Journal of Recent Scientific Research, 5:449-459.

Douds, D., Nagahashi, G., Reider, C., Hepperly, P. (2007). Inoculation with Arbuscular Mycorrhizal Fungi Increases the Yield of Potatoes in a High P Soil. Biological Agriculture and Horticulture, 25: 67–78.

El hazzat, N., Ouazzani touhami, A., Chliyeh, M., Errifi, A., Selmaoui, K., Benkirane, R., Douira, A. (2019). Effect of a composite endomycorrhizal inoculum on the manifestation of chickpea wilt, caused by Fusarium solani. Plant Cell Biotechnology and Molecular Biology, 20, 486-500.

Emran, M., Rashad, M., Gispert, M., Pardini, G. (2017). Increasing soil nutrients availability and sustainability by glomalin in alkaline soils. Agricul. Biosystems Eng. 2, 74–84.

Ezekiel, R., Singh, N., Sharma, S., Kaur, A. (2013). Beneficial phytochemicals in Potato-a review. Food Res. Int. 50, 487-496.

Fall, A., Nakabonge, G., Ssekandi, J., Founoune Mboup, H., Apori, S., Ndiaye, A., Badji, A., Ngom, K. (2022). Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil. Frontiers in Fungal Biology 3:723892.

FAO, (2020). World Food and Agriculture-Statistical Yearbook 2020. Rome. https://www.fao.org/3/cb1329en/CB1329EN.pdf.

FAOSTAT, (2022). Data from Crops Production.

https://www.fao.org/faostat/en/#home. Getman-Pickering, Z., Stack, G., Thaler, J., (2021).

Fertilizer quantity and type alter mycorrhizae conferred growth and resistance to herbivores. J. Appl. Ecol. 58, 931-940.

Fracchia, S., Garcia-Romera, I., Godeas, A., Ocampo, J. 2000. Effect of the saprophytic fungus Fusarium oxysporum on arbuscular mycorrhizal colonization and growth of plants in greenhouse and field trials. Plant Soil 223, 177-186.

García-Romera, I., García-Garrido, J.M., Martín, J., Fracchia, S., Mujica, M.T., Godeas, A., Ocampo, J.A., 1998. Interactions between saprotrophic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis 24, 235–246.

Giri, B., Kapoor, R., Mukerji, K. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils, 38, 176–180.

Hassan, A. (2003). Potato. Dar-AL-Arabiya Publication. Cairo. Egypt, 198.

Hijri, I., Sykorova, Z., Oehl, F., Ineighen, K., Mader, P., Wiemken, A., Redecker, D. (2006). Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molecular Ecology, 15: 2277–2289.

Huanshi, Z., Xianghua, W., Gang, L., Pei, Q. (2011). Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils, 47, 543–554.

Ismail, Y. and Hijri, M. 2012. Arbuscular mycorrhisation with Glomus irregulare induces expression of potato PR homologues genes in response to infection by Fusarium sambucinum. Functional Plant Biology, 12p.

Ismail, Y., McCormick, S., Hijri, M. 2011. A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum. PLoS ONE , 6, 17990.

Jaffri, S., Ahmad, K., Jabeen, A. 2021. Biofertilizers’ functionality in organic agriculture entrenching sustainability and ecological protection. In Biofertilizers; Woodhead Publishing: Sawston, UK, pp, 211-219.

Jin, H., Pfeffer, P., Douds, D., Piotrowski, E., Lammers, P., Shachar-Hill, Y. (2005). The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol. 168, 687-696.

Jones, D., Oburger, E. (2011). "Solubilization of phosphorus by soil microorganisms," in Phosphorus in Action. Eds E. K. Bunemann, A. Oberson, E. Frossard (Berlin: Springer), 169–198.

Junior, G., Pereira, R.., Sodre, G., Sacramneto, K., Gross, E. (2018). Inoculation with arbuscular mycorrhizal fungi and organic compost from cocoa shell positively influence the growth and mineral nutrition of soursop plants (Annona muricata L.). Rev. Bras. Frutic. 40: 1-11.

Juntahum, S., Jongrungklang, N., Kaewpradit, W., Ekprasert, J., Boonlue, S. 2021. Improved physiological performances of sugarcane during maturation and ripening phase by inoculation of arbuscular mycorrhizal fungi. Sugar Tech. 23, 336-342.

Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int. J. Agron: 4917256.Potatoes and Artichokes, Tarhouni Belhassen and Ben Ammar Haroun for their precious help.

Karagiannidis, N., Bletsos, F., Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb) and mycorrhizae (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci. Hortic. 94, 145-156.

Lambers, H., Raven, J., Shaver, G., Smith, S. (2008). Plant nutrient acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95-103.

Larkin, R. (2008). Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato. Soil Biol. Biochem. 40, 1341–1351.

Lin, C., Wang, Y., Liu, M. (2020). Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamialanceolata). Sci. Rep. 10, 12260.

Lombardo, S., Abbate, C., Pandino, G., Parisi, B., Scavo, A., Mauromicale, G. 2020. Productive and physiological response of organic potato grown under highly calcareous soils to fertilization and mycorrhization management. Agronomy, 10, 1200.

Lone, R., Shuab, R., Sharma, V., Kumar, V., Mir, R., Koul, K. (2015). Effect of arbuscular mycorrhizal fungi on growth and development of potato (Solanum tuberosum) plant. Asian J. Crop Sci. 7, 233–243.

Liu, C., Ravnskov, S., Liu, F., Rubæk, G., Andersen, M. (2018). Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J. Agric. Sci. 156, 46–58.

Lutaladio, N.B., Prakash, A. (2010). The Potato: History and Economic Development. Cahiers de Nutrition and Dietetics, 45: S5-S16.

Maboko, M., Bertling, I., Plooy, C., (2013). Arbuscular mycorrhiza has limited effects on yield and quality of tomatoes grown under soilless cultivation. Acta Agriculturae Scandinavica Section B-Soil and Plant Science 63(3):261-270.

Mäder, P., Kaiser, F., Adholeya, A., Singh, R., Uppal, H., Sharma, A., Srivastava, R., Sahai, V., Aragno, M., Wiemken, A., Johri, B., and Fried, P. (2011). Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biology and Biochemistry, 43, 609-619.

Martin, S., Mooney, S., Dickinson, M., and West, H. (2011). The effects of simultaneous root colonisation by three Glomus species on soil pore characteristics. Soil Biology and Biochemistry, 49, 167-173.

Mathimaran, N., Jegan, S., Thimmegowda, M., Prabavathy, V., Yuvaraj, P., Kathiravan, R., Sivakumar, M., Manjunatha, B., Bhavitha, N., Sathish, A., 2020. Intercropping transplanted pigeon pea with finger millet: Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input. Front. Sustain. Food Syst. 4, 88.

Maynard, D.N., Hochmuth, G.J. (2007). Vegetables and the Vegetable Industry. In: Knott’s Handbook for Vegetable Growers. John Wiley & Sons, Inc, 1-53.

McAllister, C., García-Romera, I., Godeas, A., Ocampo, J.A., 1994. Interaction between Trichoderma koningii, Fusarium solani and Glomus mosseae: effect on plant growth, arbuscular mycorrhizas and the saprophytic population. Soil Biol. Biochem. 26, 1363–1367.

Mc-Gonigle, T., Miller, M., Evans, D., Fairchild, G., Swan, J. (1990). A new method which gives an objective measure of colonization of roots by icular-arbuscular mycorrhizal fungi. New Phytologist, 115, 495-501.

Ministry of Agriculture, Water Resources and Fisheries of Tunisia, (2022). National Observatory of Tunisian agriculture.

Mukerji, K., Chamola, B., Upadhyay, R., (1999), Biotechnological Approaches in Biocontrol of Plant Pathogens. Kluwer Academic/Plenum Publishers, New York. 135–155.

Nurbaity, A. (2014). Application of AM Fungi in Remediation of Saline Soils. In Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Springer, Berlin, Heidelberg, 313-324.

Pauwels, J.M., Van Ranst, E., Verloo, M., MvondoZe, A. (1992). Manuel de Laboratoire de Pédologie-méthodes d’analyses de sols et de plantes; equipment et gestion des stocks de verrerie et de produits chimiques. Publications Agricoles nr. 28, A.G.C.D., Bruxelles, Belgium.

Phillips, J., Hayman, D. (1970). Improved procedures for cleaning roots and staining parasitic and VAM fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158-161.

Potatoes South Africa (2020). Multimedia Guide to Potato Production in South Africa. https://www.nbsystems.co.za/potato/

Rivera-Becerril, F., van Tuinen, D., Chatagnier, O., Rouard, N., Beguet, J., Kuszala, C., Soulas, G., Gianinazzi-Pearson, V., Martin-Laurent, F. (2017). Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Sci. Total, Environ, 577,84-93.

Saini, I., Kaushik, P., Al-Huqail, A.,Khan, F., Siddiqui, M. 2021. Effect of the diverse combinations of useful microbes and chemical fertilizers on important traits of potato. Saudi Journal of Biological Sciences, 28, 2641-2648.

Savci, S. (2012). An agricultural pollutant: chemical fertilizer. International Journal of Environmental Science and Development, 3(1), 73.

Sghir, F., Touati, J., Chliyeh, M., Mouria, B., Ouazzani Touhami, A., Filali-Maltouf, A., El Modafar, C., Moukhli, A., Benkirane, R., Douira, A. (2015). Effect of Trichoderma harzianum and endomycorrhizae on the suppression of Fusarium wilt in plants of two date palm varieties: Majhoul and Boufeggous. IJAPBC, 4(2):2277– 4688.

Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X. (2011). Phosphorus dynamics: From soil to plant. Plant Physiol. 156, 997-1005.

Shuab, R., Lone, R., Koul, K. (2017). Influence of arbuscular mycorrhizal fungi on storage metabolites, mineral nutrition, and nitrogen-assimilating enzymes in potato (Solanum tuberosum L.) plant. J. Plant Nutr. 40, 1386-1396.

Silvestri, A., Turina, M., Fiorilli, V., Miozzi, L., Venice, F., Bonfante, P. (2020). Different genetic sources contribute to the small RNA population in the arbuscular mycorrhizal fungus gigaspora margarita. Front. Microbiol. 11:395.

Smith, S., Jakobsen, I., Grønlund, M., and Smith, F. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156, 1050-1057.

Smith, S., and Smith, F. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227–250.

Smith, S., Read, D. (2008). Mycorrhizal Symbiosis. Troisième edition, New York, Academic Press, 800 pp.

Spagnoletti, F., Carmona, M., Balestrasse, K., Chiocchio, V., Giacometti, R., Lavado, R. 2021. The arbuscular mycorrhizal fungus Rhizophagus intraradices reduces the root rot caused by Fusarium pseudograminearum in wheat. Rhizosphere, 2452-2198.

Spagnoletti, F., Carmona, M., G´omez, N.T., Chiocchio, V., Lavado, R.S., 2017. Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Appl. Soil Ecol. 121, 41–47.

Tahmatsidou V., O’Sullivan, J., Cassells, AC., Voyiatzis, D., Paroussi, G (2006). Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry. Applied Soil Ecology. 32:316-324.

Tarafdar, J., Marschner, H. (1994). Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Biochem. 26, 387-395.

Trotta, A., Vanese, G., Gnavi, E., Fascon, A., Sampo S., Berta G. 1996. Interaction between the soilborne root pathogen Phytophthora nicotianae Var parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plant. Plant Soil.

Walkley, A., Black, I. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-37.

Yao, M., Tweddell, R., Desilets, H. (2002). Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctoniasolani. Mycorrhiza 12, 235-242.

Zhu, J., Li, M., Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci. Tot. Environ. 612, 522-537.

Downloads

Published

2022-12-01

How to Cite

Ettlili, S., Labidi , S., Khiari, B., Jerbi , M., Ben Alaya, A., & Djébali, N. (2022). Reduced nitrogen and phosphorus fertilization combined with mycorrhizal inoculation enhance potato yield and soil mineral fertility. JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT, 4(4), 20–29. https://doi.org/10.56027/JOASD.212022

Issue

Section

Articles

Plum Analytics

 Artifact Widget

Most read articles by the same author(s)